

SQLF

GP Power Tools for
Microsoft Dynamics™ GP

User’s Guide

Build 31

Copyright Copyright © 2014-2025 Winthrop Development Consultants. All rights reserved.

Limitation of Liability This document is provided “as-is”. Information and views expressed in this document, including

URL and other Internet Web site references, may change without notice. You bear the risk of
using it.

Some examples depicted herein are provided for illustration only and are fictitious. No real
association or connection is intended or should be inferred.

Intellectual property Complying with all applicable copyright laws is the responsibility of the user. Without limiting the

rights under copyright, no part of this document may be reproduced, stored in or introduced into
a retrieval system, or transmitted in any form or by any means (electronic, mechanical,
photocopying, recording, or otherwise), or for any purpose, without the express written
permission of Winthrop Development Consultants.

Winthrop Development Consultants may have patents, patent applications, trademarks,
copyrights, or other intellectual property rights covering subject matter in this document. Except
as expressly provided in any written license agreement from Winthrop, the furnishing of this
document does not give you any license to these patents, trademarks, copyrights, or other
intellectual property.

Trademarks Microsoft, Excel, Microsoft Word, Microsoft Edge, Internet Explorer, Microsoft Dexterity,

Microsoft Dynamics, Outlook, and SQL Server are trademarks of the Microsoft group of
companies. FairCom and c-tree Plus are trademarks of FairCom Corporation and are registered
in the United States and other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

Warranty disclaimer Winthrop Development Consultants disclaims any warranty regarding the sample code contained

in this documentation, including the warranties of merchantability and fitness for a particular
purpose.

License Agreement Use of this product is covered by a license agreement provided with the software product.

Application & documentation designed, developed, and supported by

David Musgrave of Winthrop Development Consultants

 G P P O W E R T O O L S 3

 Contents

Contents 3

Chapter 1: Introduction 13

Examples of use 17
Support 18
GP Power Tools Portal 18

Chapter 2: Installation and Configuration 19

Installation 20
Additional Launch File Installer 22
Security 24

Navigation 27
Recommended Configuration 31
SQL Profile Tracing Configuration 36
Macro Recording Configuration 41
About GP Power Tools 42
GP Power Tools Registration 44
GP Power Tools Update Check 46
GP Power Tools Feedback Survey 47
Advanced Mode Access 48
GP Power Tools and the Web Client 49

Chapter 3: System Module Features 50

Manual Logging Mode 51
ScreenShot 57
Send Email 62
Calculator 66
Dex.ini Settings 68
Administrator Password Setup 79
Logging Settings 81
Email Settings 92
Configuration Export/Import 96
Configuration Maintenance 98

Setup Backup and Restore 100
Dictionary Assembly Generator Control 101
Additional System Features 103

Chapter 4: Administrator Tools Features 106

Resource Information 107
Resource Finder 128
Security Profiler 134
Security Information 138
Security Log 146
Security Analyzer 150
Deny Based Security – Introduction 153

4 G P P O W E R T O O L S

Deny Based Security – Enhanced Security 154
Deny Based Security – Security Denied 159

Deny Based Security – Security Hidden 161
Administrator Settings 163
Dex.ini Configuration 186
Dictionary Control 190
Company Login Filter 195
Window Position Memory 201
User Activity Log 206
Login Limits 209
Launch File Configuration 213
Dynamic Product Selection 217

Website Settings 223
Product Version Validation 225
Additional Administrator Features 228

Chapter 5: Developer Tools Features 229

Runtime Executer 230
SQL Executer 231
.Net Executer 233
Project Setup 234
Automatic Trigger Mode 244
Trigger Setup 252
Runtime Execute Setup 285

SQL Execute Setup 297
.Net Execute Setup 310
Snippet Setup 319
Parameter Lists 326
Messages Setup 335
Dynamic Trigger Logging 339
Virtual Fields 343

Additional Developer Features 345

Chapter 6: Form Control Tools Features 347

Form Control 348

Form Control Setup 357
Password Setup 373
Form Control Status 378
Form Control Resources 379

Chapter 7: Database Tools Features 382

XML Table Export 383
XML Table Import 387
Database Validation 389
SQL Login Maintenance 409
Password Reset Email Settings 412
Copy User Settings 414

 G P P O W E R T O O L S 5

SQL Trigger Control 417
Note Fix Utility 419

Database Space Recovery 426
Additional Database Features 429

Chapter 8: Dex.ini Settings 430

GP Power Tools Settings 430
System Settings 441
Script Editor Settings 445

Chapter 9: Helper Functions 446

MBS_Get_Window_Value 452
MBS_Get_Window_Value_Boolean 453
MBS_Get_Window_Value_Date 454

MBS_Get_Window_Value_Numeric 455
MBS_Get_Window_Value_String 456
MBS_Get_Window_Value_Text 457
MBS_Get_Window_Value_Time 458
MBS_Get_Window_Value_Exists 459
MBS_Get_Window_Value_Modified 460
MBS_Get_Window_Value_Modified_Boolean 461
MBS_Get_Window_Value_Modified_Date 462
MBS_Get_Window_Value_Modified_Numeric 463
MBS_Get_Window_Value_Modified_String 464

MBS_Get_Window_Value_Modified_Text 465
MBS_Get_Window_Value_Modified_Time 466
MBS_Get_Window_Value_Modified_Exists 467
MBS_Set_Window_Value 468
MBS_Set_Window_Value_Boolean 469
MBS_Set_Window_Value_Date 470
MBS_Set_Window_Value_Numeric 471

MBS_Set_Window_Value_String 472
MBS_Set_Window_Value_Text 473
MBS_Set_Window_Value_Time 474
MBS_Set_Window_Value_Focus 475

MBS_Set_Window_Value_Focus_Immediate 476
MBS_Set_Window_Value_Enabled 477
MBS_Set_Window_Value_ReadOnly 478
MBS_Set_Window_Value_Visible 479
MBS_Set_Window_Value_Modified 480
MBS_Set_Window_Value_Modified_Boolean 481
MBS_Set_Window_Value_Modified_Date 482
MBS_Set_Window_Value_Modified_Numeric 483
MBS_Set_Window_Value_Modified_String 484
MBS_Set_Window_Value_Modified_Text 485
MBS_Set_Window_Value_Modified_Time 486

6 G P P O W E R T O O L S

MBS_Set_Window_Value_Modified_Focus 487
MBS_Set_Window_Value_Modified_Focus_Immediate 488

MBS_Set_Window_Value_Modified_Enabled 489
MBS_Set_Window_Value_Modified_ReadOnly 490
MBS_Set_Window_Value_Modified_Visible 491
MBS_Run_Window_Value 492
MBS_Run_Window_Value_Modified 493
MBS_Pull_Window_Focus 494
MBS_Get_Table_Value1 495
MBS_Set_Table_Value1 496
MBS_Get_Table_Value2 497
MBS_Set_Table_Value2 498

MBS_Get_Table_Value3 499
MBS_Set_Table_Value3 500
MBS_Get_Table_Value4 501

MBS_Set_Table_Value4 502
MBS_Get_Table_Buffer_Value 503
MBS_Get_Table_Buffer_Value_Boolean 504
MBS_Get_Table_Buffer_Value_Date 505
MBS_Get_Table_Buffer_Value_Numeric 506
MBS_Get_Table_Buffer_Value_String 507
MBS_Get_Table_Buffer_Value_Text 508
MBS_Get_Table_Buffer_Value_Time 509

MBS_Set_Table_Buffer_Value 510
MBS_Set_Table_Buffer_Value_Boolean 511
MBS_Set_Table_Buffer_Value_Date 512
MBS_Set_Table_Buffer_Value_Numeric 513
MBS_Set_Table_Buffer_Value_String 514
MBS_Set_Table_Buffer_Value_Text 515
MBS_Set_Table_Buffer_Value_Time 516
MBS_Copy_To Window 517
MBS_Copy_From_Window 518
MBS_Copy_To Window_Modified 519
MBS_Copy_From_Window_Modified 520

MBS_Table_Buffer_Get 521
MBS_Table_Buffer_Save 522
MBS_Table_Buffer_Remove 523
MBS_Table_Buffer_Release 524
MBS_Table_Buffer_Range 525
MBS_Table_Buffer_Clear 529
MBS_Table_Buffer_Fill 530
MBS_Runtime_Execute 531
MBS_Runtime_Execute_Background 532
MBS_Runtime_Execute_Delayed 533
MBS_Runtime_Execute_After_Background 534

 G P P O W E R T O O L S 7

MBS_Runtime_Execute_Modified 535
MBS_Runtime_Execute_Modified_Background 536

MBS_Runtime_Execute_Modified_Delayed 537
MBS_Runtime_Execute_Modified_After_Background 538
MBS_SQL_Set_Database 539
MBS_SQL_Check_Exists 540
MBS_SQL_Execute 543
MBS_SQL_Get_Data 545
MBS_SQL_Parse_Data 547
MBS_SQL_Parse_Data_Boolean 548
MBS_SQL_Parse_Data_Currency 549
MBS_SQL_Parse_Data_Date 550

MBS_SQL_Parse_Data_Datetime 551
MBS_SQL_Parse_Data_Integer 552
MBS_SQL_Parse_Data_Long 553

MBS_SQL_Parse_Data_String 554
MBS_SQL_Parse_Data_Text 555
MBS_SQL_Parse_Data_Time 556
MBS_SQL_Parse_Data_VCurrency 557
MBS_SQL_Parse_Data_Reset 558
MBS_Export_SQL_Query_To_File 559
MBS_SQL_Results 560
MBS_SQL_Results_Immediate 561

MBS_SQL_Results_Goto 562
MBS_SQL_Results_Immediate_Goto 563
MBS_SQL_Results_Close 564
MBS_SQL_Results2 565
MBS_SQL_Results_Immediate2 566
MBS_SQL_Results_Goto2 567
MBS_SQL_Results_Immediate_Goto2 568
MBS_SQL_Results_Close2 569
MBS_SQL_Goto_Get_Data 570
MBS_SQL_Goto_Close 571
MBS_SQL_Sort_Get 572

MBS_SQL_Sort_Set 573
MBS_SQL_Export_Data 574
MBS_Net_Execute 575
MBS_Script_Load_Dex 577
MBS_Script_Load_SQL 578
MBS_Script_Load_SQL_DB 579
MBS_Script_Load_Net 580
MBS_Param_Set 581
MBS_Param_Get 582
MBS_Param_Del 583
MBS_Param_DelAll 584

8 G P P O W E R T O O L S

MBS_Memory_Set 585
MBS_Memory_Set_Boolean 586

MBS_Memory_Set_Currency 587
MBS_Memory_Set_Date 588
MBS_Memory_Set_Long 589
MBS_Memory_Set_String 590
MBS_Memory_Set_Time 591
MBS_Memory_Set_Reference 592
MBS_Memory_Set_Table 593
MBS_Memory_Set_Field 594
MBS_Memory_Get 595
MBS_Memory_Get_Boolean 596

MBS_Memory_Get_Currency 597
MBS_Memory_Get_Date 598
MBS_Memory_Get_Long 599

MBS_Memory_Get_String 600
MBS_Memory_Get_Time 601
MBS_Memory_Get_Reference 602
MBS_Memory_Del 603
MBS_Memory_Del_Boolean 604
MBS_Memory_Del_Currency 605
MBS_Memory_Del_Date 606
MBS_Memory_Del_Long 607

MBS_Memory_Del_String 608
MBS_Memory_Del_Time 609
MBS_Memory_Del_Reference 610
MBS_Get_Constant 611
MBS_Get_Constant_Currency 612
MBS_Get_Constant_Integer 613
MBS_Get_Constant_String 614
MBS_Set_Global 615
MBS_Set_Global_Boolean 616
MBS_Set_Global_Date 617
MBS_Set_Global_Numeric 618

MBS_Set_Global_String 619
MBS_Set_Global_Text 620
MBS_Set_Global_Time 621
MBS_Get_Global 622
MBS_Get_Global_Boolean 623
MBS_Get_Global_Date 624
MBS_Get_Global_Numeric 625
MBS_Get_Global_String 626
MBS_Get_Global_Text 627
MBS_Get_Global_Time 628
MBS_Auto_Log 629

 G P P O W E R T O O L S 9

MBS_Logging_Start 630
MBS_Logging_Stop 631

MBS_Trigger_Start 632
MBS_Trigger_Stop 633
MBS_Trigger_Update_Dialog 634
MBS_Trigger_Update_Email 635
MBS_Trigger_Update_Email 636
MBS_Arguments_Get_Count 637
MBS_Arguments_Get_Type 638
MBS_Arguments_Get_Value 639
MBS_Arguments_Set_Value 641
MBS_DUOS_Set 642

MBS_DUOS_Get 643
MBS_DUOS_Del 644
MBS_DUOS_DelAll 645

MBS_UserAddInfo_Get 646
MBS_UserAddInfo_Set 647
MBS_UserAddInfo_GetPrompt 648
MBS_SQL_Lookup 649
MBS_SQL_Lookup2 650
MBS_SQL_Lookup_Parameter 651
MBS_SQL_Lookup_Parameter2 652
MBS_SQL_Lookup_Validate 653

MBS_SQL_Lookup_Parameter_Validate 654
MBS_Form_Lookup 655
MBS_Form_Lookup2 656
MBS_Form_Lookup_Parameter 657
MBS_Form_Lookup_Parameter2 658
MBS_Project_Start 659
MBS_Project_Stop 660
MBS_Script_Substitute 661
MBS_Parameter_Placeholder 662
MBS_Parameter_String 663
MBS_Parameter_Number 664

MBS_Parameter_Currency 665
MBS_Parameter_Boolean 666
MBS_Parameter_Date 667
MBS_Parameter_Time 668
MBS_Parameter_Load 669
MBS_Parameter_Open 670
MBS_Parameter_Set_String 671
MBS_Parameter_Set_Number 672
MBS_Parameter_Set_Currency 673
MBS_Parameter_Set_Boolean 674
MBS_Parameter_Set_Date 675

10 G P P O W E R T O O L S

MBS_Parameter_Set_Time 676
MBS_Parameter_Get_String 677

MBS_Parameter_Get_Number 678
MBS_Parameter_Get_Currency 679
MBS_Parameter_Get_Boolean 680
MBS_Parameter_Get_Date 681
MBS_Parameter_Get_Time 682
MBS_Convert 683
MBS_Convert_Boolean 684
MBS_Convert_Currency 685
MBS_Convert_Date 686
MBS_Convert_Datetime 687

MBS_Convert_Integer 688
MBS_Convert_Long 689
MBS_Convert_String 690

MBS_Convert_Text 691
MBS_Convert_Time 692
MBS_Convert_VCurrency 693
MBS_Return_By_Field 694
MBS_Return_By_Field2 695
MBS_Return_By_Reference 696
MBS_Return_By_Reference2 697
MBS_Map_By_Field 698

MBS_Map_By_Reference 699
MBS_Map 700
MBS_Map_Boolean 701
MBS_Map_Date 702
MBS_Map_Numeric 703
MBS_Map_String 704
MBS_Map_Text 705
MBS_Map_Time 706
MBS_Get_Message 707
MBS_Get_Message_Prompts 708
MBS_getmsg 709

MBS_Get_Error_Message 710
MBS_Show_Dialog 711
MBS_Show_Dialog_Text 712
MBS_Ask_Dialog 713
MBS_Ask_Dialog_Text 714
MBS_Get_DateTime 715
MBS_Token 716
MBS_Field_ParseText 717
MBS_subtext 718
MBS_Security_Form_Check 719
MBS_Trigger_Disable 720

 G P P O W E R T O O L S 11

MBS_Trigger_Enable 721
MBS_Trigger_DisableSingle 722

MBS_Trigger_EnableSingle 723
MBS_Is_Trigger_Started 724
MBS_Is_Trigger_Enabled 725
MBS_Exit_After_Processes 726
MBS_Switch_Company 727
MBS_CompanyColorGetRGB 728
MBS_Copy_To_Clipboard 729
MBS_Copy_From_Clipboard 730
MBS_Show_Desktop_Alert 731
MBS_Email_API 732

MBS_Add_Virtual_Field 733
MBS_Add_Virtual_FieldPrompt 734
MBS_Add_Virtual_FieldFormat 735

MBS_Add_Virtual_FieldPromptLookup 736
MBS_Add_Virtual_FieldPromptFormat 737
MBS_Add_Virtual_FieldAll 738
MBS_Add_Virtual_FieldLine 740
MBS_Expand_Virtual_Field_Window 741
MBS_Get_Field_Reference 742
MBS_Get_Virtual_Field 743
MBS_Set_Virtual_Field 744

MBS_Map_Virtual_Field 745
MBS_Get_Virtual_Field_Caption 746
MBS_Set_Virtual_Field_Caption 747
MBS_Get_Virtual_Field_Tooltip 748
MBS_Set_Virtual_Field_Tooltip 749
MBS_Ask_Password 750
MBS_Control_Start 751
MBS_Control_Stop 752
MBS_Control_Stop_All 753
MBS_Control_Update_Dialog 754
MBS_Control_Update_Expression 755

MBS_Get_First_Window 756
MBS_Check_Resource_Exists 757

Chapter 10: RW Functions 758

rw_ReportStart 759
rw_ReportEnd 760
rw_TableHeaderString 761
rw_TableHeaderCurrency 762
rw_TableLineString 763
rw_TableLineCurrency 765
rw_ReportStart Old Method 767
rw_ReportEnd Old Method 768

12 G P P O W E R T O O L S

rw_TableHeaderString Old Method 769
rw_TableHeaderCurrency Old Method 770

rw_TableLineString Old Method 771
rw_TableLineCurrency Old Method 773
RW_GetUserMasterAdditionalData 775
RW_GetUserMasterAdditionalPrompts 776

Chapter 11: Service Procedures 777

ServiceCreateCustom 778
ServiceDeleteCustom 780
ServiceGetCustom 782
ServiceUpdateCustom 784
ServicePostCustom 786

Chapter 12: Developer APIs 788

MBS_Email_API 789
MBS_WindowPositionCheck 790
MBS_WindowPositionMemory 791
MBS_WindowPositionMemoryResize 792
MBS_CompanyColorGet 793
MBS_CompanyColorGetRGB 794

GP Power Tools Index 795

 G P P O W E R T O O L S 13

 Chapter 1: Introduction

GP Power Tools is a primarily Dexterity based with Visual C# and Visual
Basic.Net components suite of utilities and tools created to assist with the
task of supporting Microsoft Dynamics GP.

GP Power Tools is divided into four modules which can be purchased
separately with some standard features available to all modules. The
modules are:

• Administrator Tools

• Developer Tools

• Form Control Tools

• Database Tools

The System Module which is automatically registered when one or more
of the three modules above is registered.

The features of GP Power Tools are also divided into User level (Standard
Mode) and Administrator level (Advanced Mode) features.

Standard Mode features are read-only and can be safely used by all users
in a system. Advanced Mode features include scripting and accessing
system settings and should only be used by system Administrators. To
access an Advanced Mode feature, a user will need elevated privileges at
the SQL Server level in addition to application-level security and an
optional system or administrator password.

On a registered system, if you open a window from an unregistered
module, you might be asked if you wish to open the window in Preview
Mode. If a window is opened in Preview Mode, you may use the window
to explore its features, however its functionality will be limited.

Below is a list of what features are contained in each module with
Advanced Mode features highlighted with an asterisk (*).

C H A P T E R 1 I N T R O D U C T I O N

14 G P P O W E R T O O L S

The System Module contains the following features:

Feature Description

Logging Control including
Manual Logging Mode

Manually turn on SQL Logging and Dexterity Logging and
Profiling

ScreenShot Capture and either email or save Screenshots and System Status
information

Send Email Send Email messages from within the application

Calculator Touch friendly standard calculator with clipboard integration

Dex.ini Settings Change System and Debugger Dex.ini Settings for the current
workstation

Administrator Password Setup* Create optional separate password to be used when accessing
Advanced mode features

Logging Settings* Change system wide Logging Settings such as shared path
location, default logs and SQL Profile Trace setup

Email Settings* Change system wide Email Settings controlling the email engine
used by the tool

Configuration Export/Import* Export and Import settings

Configuration Maintenance* Clear GP Power Tools data tables

Setup Backup and Restore* Backup all data in SQL Tables to Debugger.xml file and restore
from Debugger.xml to SQL Tables

Dictionary Assembly Generator
Control*

Check the status of Dictionary Assembly DLL files and recreate
them if necessary

 C H A P T E R 1 I N T R O D U C T I O N

 G P P O W E R T O O L S 15

The Administrator Tools module contains the following features:

Feature Description

Resource Information Obtain Details of any Table, Form, Window, Field, Report,
Script, Global Variable, Constant or Message/Warning resource

Resource Finder Enhanced window to locate table data related to any field in
any product

Security Profiler Monitor all Security check activity

Security Information Display Security settings for specific resources for a user and
company

Security Log Security activity tracking for users, companies and the entire
system

Security Analyzer Displays results of various queries against the Security data for
the system to highlight possible security related issues

Enhanced Security The primary interface to Deny Based Security additional security
layer including denying security and hiding menu navigation
options on a per user per company basis

Security Denied Deny Based Security maintenance window for security denied

Security Hidden Deny Based Security maintenance window for security hidden

Administrator Settings* Change system wide Administrator Settings controlling the
behavior of the tool, including Company Color Themes and
Automatic Logout

Dex.ini Configuration* Automatically update Dex.ini settings across multiple
workstations

Dictionary Control* Enable and disable third party products and VBA and Visual
Studio customizations

Company Login Filter* Filter companies available when logging in based on the
installation folder and/or launch file name used

Window Position Memory* Automatically remember a user’s preferred window position,
size and state for any window in Microsoft Dynamics GP

User Activity Log* User Login Activity tracking to record logins and logouts and
track daily maximum session count on a system, user and
company basis

Login Limits* Limit user logins on a system, user and company basis

Launch File Configuration* Automatically update Dynamics.set launch files across multiple
workstations

Dynamic Product Selection* Allows selection between multiple versions of the same window
or report as the window or report is opened

Website Settings* Change the website used for the Connect and Intelligent Cloud
Insights homepage sections

Product Version Validation* Identify when there are mismatched product dictionaries
installed or when product dictionaries are not installed when all
products are needed

C H A P T E R 1 I N T R O D U C T I O N

16 G P P O W E R T O O L S

The Developer Tools module contains the following features:

Feature Description

Trigger Status Display currently active triggers

Runtime Executer Run published Dexterity sanScript scripts

SQL Executer Run published Transact SQL scripts

.Net Executer Run published C# and VB.Net scripts

Project Setup* Group together all the related Triggers, Scripts (Dexterity, SQL,
.Net) and Parameter Lists into a Project

Trigger Setup* Create triggers for debugging or custom development

Runtime Execute Setup* Create and run Dexterity sanScript scripts

SQL Execute Setup* Create and run Transact SQL scripts

.Net Execute Setup* Create and run C# and VB.Net scripts

Snippet Setup* Create and maintain script snippets

Parameter Lists* Create interactive parameter dialogs to be used with scripting
features.

Messages Setup* Create reusable multi-lingual messages for use in triggers and
scripts

Dynamic Trigger Logging* Track execution paths by dynamically registering triggers
against events in Dynamics GP and logging when they occur

The Form Control Tools module contains the following features:

Feature Description

Form Control Status* Display currently active Form Control triggers

Form Control Resources* Display the form resource data for forms with Form Control
applied

Form Control Setup* Setup Form Control for no code/low code customization of
forms

Password Setup* Setup Passwords for use with Form Control and Developer Tools

The Database Tools module contains the following features:

Feature Description

XML Table Export* Export any table(s) to an XML file

XML Table Import* Import previously exported tables

Database Validation* Validate SQL user and database information and table
structures

SQL Login Maintenance* Reset Users’ Passwords and view or change password policy
settings

Password Reset Email Settings* Control settings for sending emails when resetting user
passwords

Copy User Settings* Copy user settings in the system database between user IDs

SQL Trigger Control* Disable, enable and delete SQL table triggers for
troubleshooting or maintenance

Note Fix Utility* Identify and fix issues with Record Notes and Note Index values

Database Space Recovery* Recovery unused space from database tables and
enable/disable compression.

 C H A P T E R 1 I N T R O D U C T I O N

 G P P O W E R T O O L S 17

Examples of use

GP Power Tools has many uses. Here are some examples:

• When issues or bugs occur, GP Power Tools helps you identify the
specific series of events that led up to them.

• Got performance problems? Use GP Power Tools to quickly and
simply turn on all logging and profiling capabilities without restarting
GP.

• Do you want to know the details about dictionary resources? GP
Power Tools gives you a complete and in-depth look at all security
objects, including Forms, Windows, Tables, Reports, Fields, and
Scripts.

• Find out what's causing security access issues by using GP Power
Tools to identify the responsible forms, reports, or tables.

• Deny security access to individual resources on a per user per
company basis without needing to duplicate security tasks and roles.

• To help with troubleshooting issues, GP Power Tools can easily enable
or disable third party products or change the order of the products in
the launch file.

• When you need to import or export data to any GP table at all, think
GP Power Tools.

• Do you need to run SQL, Dexterity, C# or VB.Net scripts? You can do
it with GP Power Tools even if you don't have Dexterity, Visual Studio
or SQL Administration Tools installed.

• Capture, save, and email screenshots of all open windows and send a
system status report at the same time with GP Power Tools.

• Even if your local system doesn't have Outlook installed, GP Power
Tools can be used to send email to the system administrator.

• Overcome those difficult Report Writer (RW) user-defined function
issues with GP Power Tools.

• GP Power Tools makes it easy to roll out Dex.ini setting changes to all
workstation in your system.

• Before doing a GP upgrade, GP Power Tools can validate your SQL
users, databases and table structures to help ensure it goes smoothly.

• How about creating brand new Security Tasks and Roles by tracing
user activity that you capture interactively in GP Power Tools or from
security activity tracking logs?

• Need extra functionality for a web service integration, create custom
web services with GP Power Tools.

C H A P T E R 1 I N T R O D U C T I O N

18 G P P O W E R T O O L S

• Want to customize behavior on windows throughout the application
without using multiple triggers and scripts, the Form Control module
has you covered.

• Want to add fields to windows without needing to use Modifier to
create a Modified window, use Virtual Fields.

Support

Support for GP Power Tools is provided by Winthrop Development
Consultants.

Support cases can be logged using the link below:

https://www.winthropdc.com/support.htm

GP Power Tools Portal

You can also find release histories, FAQ documents and lots of articles as
well as links to download and purchase at the GP Power Tools Portal:

http://WinthropDC.com/GPPT

https://www.winthropdc.com/support.htm
http://winthropdc.com/GPPT

 G P P O W E R T O O L S 19

 Chapter 2: Installation and Configuration

This chapter includes the following sections:

• Installation
• Security
• Navigation
• Recommended Configuration
• SQL Profile Tracing Configuration
• Macro Recording Configuration
• About GP Power Tools
• GP Power Tools Registration
• GP Power Tools Update Check
• GP Power Tools Feedback Survey
• Advanced Mode Access
• GP Power Tools and the Web Client

C H A P T E R 2 I N S T A L L A T I O N A N D C O N F I G U R A T I O N

20 G P P O W E R T O O L S

Installation

GP Power Tools is installed by downloading the installer and executing it.
Follow the onscreen instructions to install the product files into the
Microsoft Dynamics GP application folder and the Addins subfolder. GP
Power Tools must be installed on all workstations and servers to be fully
functional.

The installation contains the following files:

• GPPTools.cnk (self-installing dictionary)

• GPPTools.txt (readme file)

• GPPTools.pdf (this user guide manual)

• Documentation/GPPTools.pdf (copy of this user guide manual)

• GPPTools_License.doc (the license agreement which you accept by
using the tool)

• Dex.chm (Dexterity Help file)

• DAG.EXE (Dictionary Assembly Generator tool)

• Application.GpPowerTools.dll (signed Dictionary Assembly)

• Application.GpPowerTools.xml (IntelliSense data for Visual Studio)

• Application.GpPowerTools.Metadata.dll (signed Dictionary Assembly
for Service Enabled Procedures)

• Application.GpPowerTools.Metadata.xml (IntelliSense data for Visual
Studio)

• Addins/WinthropDC.GpPowerToolsVC.dll (Visual C# support)

• Addins/WinthropDC.GpPowerToolsVB.dll (Visual Basic.Net support)

• MimeKit.dll (For mail support to Office 365 added in Build 29)

• MailKit.dll (For mail support to Office 365 added in Build 29)

• System.Buffers.dll (For mail support to Office 365 added in Build 29)

• System.Memory.dll (For mail support to Office 365 added in Build 29)

• System.Runtime.CompilerServices.Unsafe.dll (For mail support to
Office 365 added in Build 29)

Check the properties of all the dll files and Unblock them if necessary.

When Microsoft Dynamics GP is next launched, if asked, select “Yes” to
include new code.

 C H A P T E R 2 I N S T A L L A T I O N A N D C O N F I G U R A T I O N

 G P P O W E R T O O L S 21

If installing on a Windows system with User Account Control (UAC) active,
please launch Microsoft Dynamics GP with the Run as Administrator option to
complete the installation.

Log into Microsoft Dynamics GP with a user the appropriate SQL
privileges to create tables, such as ‘sa’ or ‘DYNSA’. GP Power Tools will
automatically create its SQL tables in the system database.

If a previous build of GP Power Tools is already installed in the system, a
dialog to confirm you want to update the tables will be displayed.

Once the tables are updated to a new version on a system, the installations of GP
Power Tools on every workstation and server must be updated to match the newly
installed build.

If you had a previous Support Debugging Tool installation, GP Power
Tools will read the Debugger.xml settings file to populate the initial data
in the SQL tables.

From Build 29 onwards, the installation will automatically apply the Windows
Bitmap Scaling settings to fix display issues when the display is set to more than
100% DPI. The settings can be checked or changed on the Dex.ini Settings
window.

C H A P T E R 2 I N S T A L L A T I O N A N D C O N F I G U R A T I O N

22 G P P O W E R T O O L S

Additional Launch File Installer

If GP Power Tools is installed on workstation which has additional launch
files in the application folder, it will offer to install itself into the additional
launch files.

If a non-Administrator user logs in when there are additional launch files
waiting to be updated, the following message will be displayed. Login will
proceed as normal once the message is dismissed.

When an Administrator user logs in and there are additional launch files
waiting to be updated, the following dialog will be displayed. Select the
launch files you want updated to add GP Power Tools or mark them as
excluded. Excluded launch files will not be included in the dialog for
future installs.

 C H A P T E R 2 I N S T A L L A T I O N A N D C O N F I G U R A T I O N

 G P P O W E R T O O L S 23

Clicking OK will update the selected launch files and record that the
installation has been completed. If Cancel is clicked, no changes are made,
and the following dialog will confirm if the installation should be recorded
as completed.

The MBS_Debug_Install Dex.ini setting is used to track if the installation on the
current workstation has been completed. The WDC_InstallExclude Dex.ini
setting is used to track the excluded launch file names (separated by commas).

C H A P T E R 2 I N S T A L L A T I O N A N D C O N F I G U R A T I O N

24 G P P O W E R T O O L S

Security

Security access must be granted to the forms of GP Power Tools before it
can be used by users other that those belonging to the POWERUSER
security role.

GP Power Tools will automatically create the Security Tasks and Security
Roles required to use the tool. The following Security Roles are created.

GP POWER TOOLS USER (GP Power Tools User)

GP POWER TOOLS ADMIN (GP Power Tools Administrator)

GP POWER TOOLS PASSWORD (GP Power Tools Administrator
Password)

GP POWER TOOLS SERVICES (GP Power Tools Services) for GP 2015 or
later.

The administrator security role grants access to all areas of the tool, while
the user security role only grants access to the Standard Mode features.
Advanced Mode features are only available to Microsoft Dynamics GP
User IDs that also have the SQL Server sysadmin fixed server role or
membership of the db_owner role on the system database (DYNAMICS)
and the current company database, even if security is granted.

After installing GP Power Tools: If logging into Microsoft Dynamics GP as
a user belonging to the POWERUSER security role, and no users have
been granted access to the GP POWER TOOLS USER security role, the
system will offer to add this security role to all users for you.

If you respond Yes, the system will remind to you to add the GP POWER
TOOLS ADMIN security role to other users who need access to the
Advanced Mode features (and do not already have access to the
POWERUSER Security Role). You have the option to open the User
Security Setup window when setup is completed.

 C H A P T E R 2 I N S T A L L A T I O N A N D C O N F I G U R A T I O N

 G P P O W E R T O O L S 25

You will then have the option to select a shared location for logs and
export files to be stored in. If you select No, the default location is the Data
folder in the application folder for Microsoft Dynamics GP. If you select
Yes, you will be presented with a dialog to select the path you wish to
use. This path should point to a folder which has full control permissions
for all users and can be specified using either a UNC pathname or a shared
drive letter available to all users.

If you selected a shared location, then you will be asked if you would like
to make this Administrator Controlled. Making the setting Administrator
Controlled, automatically rolls the setting out to all workstations in the
system on their next login and is the Recommended Configuration.

C H A P T E R 2 I N S T A L L A T I O N A N D C O N F I G U R A T I O N

26 G P P O W E R T O O L S

To manually grant security to the forms of GP Power Tools use the User
Security Setup window (Microsoft Dynamics GP >> Tools >> Setup >>
System >> User Security). After selecting the user and company, select one
of the security roles below:

GP POWER TOOLS USER (GP Power Tools User)

GP POWER TOOLS ADMIN (GP Power Tools Administrator)

GP POWER TOOLS PASSWORD (GP Power Tools Administrator
Password)

GP POWER TOOLS SERVICES (GP Power Tools Services) for GP 2015 or
later.

If a user is not going to be using any of the windows of GP Power Tools, they do
not need to be assigned to a security role. Automatic Trigger Mode will work
regardless of security settings.

 C H A P T E R 2 I N S T A L L A T I O N A N D C O N F I G U R A T I O N

 G P P O W E R T O O L S 27

Navigation

Once logged into Microsoft Dynamics GP, a user with security access
granted can find GP Power Tools Logging Control main window under
the Tools menu underneath the Microsoft Dynamics GP menu
(highlighted below). It also has the keyboard shortcut Ctrl+D assigned to
it.

GP Power Tools also adds the Raise All Windows option to the main application
menu and Tools menus, to allow for an easy method to send the main application
window to the background. The option has the keyboard shortcut Ctrl+Shift+R
assigned to it.

Also, added to the main application menu is the Exit After Processes option,
which will request the application to exit after it has completed all background
processing. The option has the keyboard shortcut Ctrl+Shift+X assigned to it.

C H A P T E R 2 I N S T A L L A T I O N A N D C O N F I G U R A T I O N

28 G P P O W E R T O O L S

From the GP Power Tools Logging Control main window, the Options
button drop list can be used to open other windows.

In addition, GP Power Tools is also found under the Tools menu on each
individual window of Microsoft Dynamics GP (highlighted below).

You may need to press and release the Alt key on the keyboard to allow
the window menu bar to activate before the shortcut keys work.

If using Microsoft Dynamics GP 2013 R2 or later in desktop mode with
ribbons enabled instead of the menus, you can access GP Power Tools
under the Tools button on the ribbon.

GP Power Tools can also be opened from the Standard Toolbar and from
Quick Links on the Home Page.

 C H A P T E R 2 I N S T A L L A T I O N A N D C O N F I G U R A T I O N

 G P P O W E R T O O L S 29

All GP Power Tools windows are also available via the standard
application menus under the GP Power Tools submenus. The GP Power
Tools Logging Control main window can be found under Transactions >>
GP Power Tools >> GP Power Tools Logging Control.

Finally, you can use the GP Power Tools Area Page by clicking on the GP
Power Tools Navigation Pane button.

If the GP Power Tools button or icon are not visible, you might need to use the
Navigation Pane Options or Show More Buttons menus from the bottom of the
Navigation Pane.

GP Power Tools adds the Find a Window option to the main application menu
and window level Tools menu. This opens a normally hidden Microsoft Dynamics
GP core window that can search the navigation menus for matching items and
open them for you. The option has the keyboard shortcut Ctrl+F assigned to it.
The Find a Window icon is also added to the Standard Toolbar.

C H A P T E R 2 I N S T A L L A T I O N A N D C O N F I G U R A T I O N

30 G P P O W E R T O O L S

Once the GP Power Tools Area Page is displayed, all the various windows
will be displayed, including the main GP Power Tools Logging Control
window (under Transactions).

When running on the Web Client, use the GP Power Tools area page or the
Quick Links on the Home Page to open GP Power Tools.

 C H A P T E R 2 I N S T A L L A T I O N A N D C O N F I G U R A T I O N

 G P P O W E R T O O L S 31

Recommended Configuration

GP Power Tools stores its settings in SQL tables. If the SQL tables are
empty and you had a previous install, the XML setup file called
Debugger.xml while be accessed once to load the data into the SQL tables.

While a shared location is no longer required for the data storage it is
recommended for the storage of all logs and export files created. This
avoids having to visit an individual workstation to have access to the files.

The recommended configuration is for GP Power Tools to be installed on
all workstations in the system and to point each workstation to use a
single shared location.

Below are step by step instructions to install and set up the Recommended
Configuration:

1. Initially install on a single instance of Microsoft Dynamics GP.

2. Launch Microsoft Dynamics GP using Run as Administrator
and click Yes if asked “Do you wish to include new code now?”

3. If upgrading from a previous install, you might be asked to re-

launch Microsoft Dynamics GP after changes were made to the
Dynamics.set launch file. If, so go back to step 2.

4. Log into Microsoft Dynamics as ‘sa’ or a user with similar
permissions.

5. If the SQL tables need to be created or updated, you will see a

progress dialog in the bottom right of your screen as the tables
are created. Any existing data will be preserved.

6. If upgrading a previous install, the SQL tables are empty and a

Debugger.xml file can be located, it will be read to populate the
SQL tables. You can import a different Debugger.xml file later if
desired.

C H A P T E R 2 I N S T A L L A T I O N A N D C O N F I G U R A T I O N

32 G P P O W E R T O O L S

7. If asked to add the base user level of security access to all users,
click Yes.

8. You will then be reminded that administrator level security
settings will need to be set up manually. You can ask to open the
User Security Setup window when setup is completed.

9. If asked to select a shared location for the setup files and logs,
click Yes and select the path you wish to use. This path should
point to a folder which has full control permissions for all users
and can be specified using either a UNC pathname or a shared
drive letter available to all users.

 C H A P T E R 2 I N S T A L L A T I O N A N D C O N F I G U R A T I O N

 G P P O W E R T O O L S 33

10. If asked about making the path setting for the shared location
Administrator Controlled, click Yes.

11. Optional: To manually change security settings, go to the User
Security Setup window (Administration >> Setup >> System >>
User Security), select the appropriate user and company and
grant access to one or both of the following roles:

For user features:
 GP POWER TOOLS USER (GP Power Tools User)
 GP POWER TOOLS SERVICES (GP Power Tools Services)
for GP 2015 or later.

For administrator features:
 GP POWER TOOLS ADMIN (GP Power Tools
Administrator)
 GP POWER TOOLS PASSWORD (GP Power Tools
Administrator Password)

It is recommended to grant all users in the system access to GP
POWER TOOLS USER. Only System Administrators need access to
GP POWER TOOLS ADMIN unless they already have access to the
POWERUSER Security Role.

12. Install GP Power Tools on all other workstations in the system.

The Recommended Configuration is now configured. To install on other
workstations just requires the copying of the files and the including of
new code.

C H A P T E R 2 I N S T A L L A T I O N A N D C O N F I G U R A T I O N

34 G P P O W E R T O O L S

Below are the manual steps showing where the responses to the dialogs
for Folder Location settings can be manually changed:

To update the current workstation only:

1. Open the Dex.ini Settings window by selecting Dex.ini Settings
from the Cards section of the GP Power Tools Area Page or by
selecting Dex.ini Settings from the Options button drop list on
the main window.

2. From the Dex.ini Settings window, on the Debug tab, select a
Specified Pathname location for logs and export files.

The pathname can be specified using a UNC path in the format
\\Server\Share\Folder\.

3. Click OK to save the changes.

file://///Server/Share/Folder/

 C H A P T E R 2 I N S T A L L A T I O N A N D C O N F I G U R A T I O N

 G P P O W E R T O O L S 35

To update the Administrator controlled setting:

1. Open the Logging Settings window by selecting Logging

Settings from the Setup section of the GP Power Tools Area Page
or by selecting Administration >> Logging Settings from the
Options button drop list on the main window.

2. From the Logging Settings window, select a shared folder where
all logs and export files will be written. This path should point
to a folder which has full control permissions for all users and
can be specified using either a UNC pathname or a shared drive
letter available to all users.

The pathname can be specified using a UNC path in the format
\\Server\Share\Folder\.

3. Click OK to save the changes.

That is all that is required for the Recommended Configuration.

file://///Server/Share/Folder/

C H A P T E R 2 I N S T A L L A T I O N A N D C O N F I G U R A T I O N

36 G P P O W E R T O O L S

SQL Profile Tracing Configuration

For more information on setting up and enabling SQL Profile Tracing
please see the section under the Logging Settings window.

Below are step by step instructions to configure the recommended settings
for SQL Profile Tracing:

1. On the SQL Server machine create a folder on a local drive for
where the SQL Profile Trace files will be stored while they are
being created. Note this local path for later.

2. Share this local folder on the network, so that all Microsoft

Dynamics GP users will have Full Control to the folder. Note
this network UNC path for later.

3. Create a user (for example: SQLTraceUser) to be used by SQL
Profile Tracing system. The user can be a local user on the SQL
Server or a domain user, but needs local Administrator rights on
the SQL Server machine. It is recommended to set the password
to not expire. Note the User ID and password for later.

4. Log into Microsoft Dynamics as ‘sa’ or a user with similar

permissions. Open the Logging Settings window by selecting
Logging Settings from the Setup section of the GP Power Tools
Area Page or by selecting Administration >> Logging Settings
from the Options button drop list on the main window.

5. From the Logging Settings window, click Edit SQL Profile Trace
Settings to open the SQL Profile Trace Settings window.

 C H A P T E R 2 I N S T A L L A T I O N A N D C O N F I G U R A T I O N

 G P P O W E R T O O L S 37

6. On the SQL Profile Trace Settings window, make sure Single
User Authentication Mode is selected. In this mode only the
single user created earlier will need permissions to create SQL
Traces and the permissions for individual users do not need to
be changed or elevated.

7. Enter the user created previously and press tab. The system will
then ask if you want to process the SQL Server Actions to enable
the Authentication Mode, click Yes.

C H A P T E R 2 I N S T A L L A T I O N A N D C O N F I G U R A T I O N

38 G P P O W E R T O O L S

8. As each step of the SQL Server actions needed to enable the
Authentication Mode are completed a desktop alert will be
displayed. You will also be asked for the password for the user
for the Enable xp_cmdshell proxy account step. The password
is not validated at this time, so please ensure it is entered
correctly.

To see the list of individual steps for enabling or disabling the
Authentication Mode, click the Process Single User Mode SQL Server
Action or Process Multi User Mode SQL Server Action button. You
can select to manually run all of the steps or select individual steps
from the list.

9. You can change the Maximum Trace file size and Maximum
number of Trace files if desired, or just leave the default values.

 C H A P T E R 2 I N S T A L L A T I O N A N D C O N F I G U R A T I O N

 G P P O W E R T O O L S 39

10. Enter in the Local Path set up previously (as created in step 1)

and press tab. The system will then ask if you want to create the
SQL Profile Trace SQL Components, click Yes to create the
stored Procedures in the DYNAMICS system database.

11. Enter the UNC Network Path set up previously (as created in
step 2) and press tab.

12. Make sure the Copy SQL Profile Trace files to Debugger Settings
location option is enabled. This will copy the completed trace
files from the SQL Server to the folder used for the Debugger
Settings and logs.

C H A P T E R 2 I N S T A L L A T I O N A N D C O N F I G U R A T I O N

40 G P P O W E R T O O L S

13. Click OK to save the settings and close the SQL Profile Trace
window.

14. On the Logging Settings window, enable the Capture SQL

Profile Trace option and set the desired Trace Mode (use Small,
if unsure). This will enable SQL Profile Tracing for Manual
Logging Mode and as the default value for Trigger Setup.

15. Click OK to save the settings and close the Logging Settings
window.

 C H A P T E R 2 I N S T A L L A T I O N A N D C O N F I G U R A T I O N

 G P P O W E R T O O L S 41

Macro Recording Configuration

For more information on enabling Macro Recording please see the section
under the Logging Settings window.

Below are step by step instructions to enable Macro Recording:

1. Log into Microsoft Dynamics as ‘sa’ or a user with similar
permissions.

2. Open the Logging Settings window by selecting Logging

Settings from the Setup section of the GP Power Tools Area Page
or by selecting Administration >> Logging Settings from the
Options button drop list on the main window.

3. On the Logging Settings window, enable the Capture Macro

Recording option. This will enable Macro Recording for Manual
Logging Mode and as the default value for Trigger Setup.

4. Click OK to save the settings and close the Logging Settings
window.

C H A P T E R 2 I N S T A L L A T I O N A N D C O N F I G U R A T I O N

42 G P P O W E R T O O L S

About GP Power Tools

You can open the About GP Power Tools window by selecting About GP
Power Tools from the Routines section of the GP Power Tools Area Page
or by selecting About GP Power Tools from the Options button drop list
on the main window.

The About GP Power Tools window shows the current version, build and
last modified date information.

You can uninstall GP Power Tools from this window. Clicking Uninstall
will remove GP Power Tools from the menus and security tables and
remove any Dex.ini settings added.

If SQL Profile Tracing is enabled, you will be asked if you want to remove
the SQL Server permissions and components created by GP Power Tools.

You will also be asked if you want the Dynamics.set launch file updated
to remove GP Power Tools, so that it does not re-install itself next time
Microsoft Dynamics GP is launched.

If User Account Control (UAC) is preventing writer access to the application
folder, you will see the following dialog displayed. You will need to use Run as
Administrator to allow access and complete the un-install.

 C H A P T E R 2 I N S T A L L A T I O N A N D C O N F I G U R A T I O N

 G P P O W E R T O O L S 43

You can also re-install GP Power Tools from this window. Clicking Re-
install will, after a confirmation dialog, remove GP Power Tools from the
menus and security tables, then re-run the installation as discussed in the
Installation section above.

To check which modules are registered you can click on the Info button.

C H A P T E R 2 I N S T A L L A T I O N A N D C O N F I G U R A T I O N

44 G P P O W E R T O O L S

GP Power Tools Registration

You can open the GP Power Tools Registration window by selecting GP
Power Tools Registration from the Routines section of the GP Power Tools
Area Page or by selecting GP Power Tools Registration from the Options
button drop list on the main window.

The GP Power Tools Registration window can also be opened by clicking
the Registration Button on the About GP Power Tools window, or from
the Additional menu on the Microsoft Dynamics GP Registration window.

The current Microsoft Dynamics GP registration details of the system
along with the registration keys for each module will be displayed.

Use the Contact Details button to complete or update the Contact Details
for the site, including consenting to the Privacy Policy. The Privacy Policy
must be accepted for the OK Button to be enabled.

 C H A P T E R 2 I N S T A L L A T I O N A N D C O N F I G U R A T I O N

 G P P O W E R T O O L S 45

The contact details must be for the end user of the system and not for a partner.
The Email address must be the valid address for the end user as it must be unique.
The Email address links the site details with the registration keys.

Use the Update Keys button to retrieve current keys for the system from
the registration server.

Use the individual Trial Key button to retrieve the key for that module and
if no key is available, request a 30 day trial of that module.

If a Product Key has been manually provided, it entered directly into the
Product Key field on the window. It is recommended to use copy and
paste to minimize typing errors.

The Automatically check for updated keys option can be used to control
the frequency that the system will automatically request updated keys
from the registration server when the current keys are expired or
optionally due to expire.

The Automatic check for updated keys only is executed when an Administrator
user logs in.

When a previous Registration has failed or expired, the system can be
configured to optionally warn users on login or prevent them from
accessing the system. This is especially useful when there are settings or
customizations using GP Power Tools which must always be active on the
system.

C H A P T E R 2 I N S T A L L A T I O N A N D C O N F I G U R A T I O N

46 G P P O W E R T O O L S

GP Power Tools Update Check

GP Power Tools can automatically check online to see if an updated build
or hotfix has been released.

The GP Power Tools Update Check window can be opened by selecting
Check for GP Power Tools Updates from the Routines section of the GP
Power Tools Area Page or by selecting Check for GP Power Tools Updates
from the Options button drop list on the main GP Power Tools Logging
Control window. It can also be opened by using the Options menu on the
About GP Power Tools window and selecting Check for Updates.

The Automatically check for updates option can be used to control the
frequency that the system will check for updates.

If an update is available, you can select not to be notified again for this update.
This will skip the one update and notify you when the next update is available.

If the frequency has not been set, the following dialog will be displayed.
Select Yes to open the GP Power Tools Update Check window.

The Automatic check for update only is executed when an Administrator user logs
in. This check is for information only, no updates to the system will be made.

 C H A P T E R 2 I N S T A L L A T I O N A N D C O N F I G U R A T I O N

 G P P O W E R T O O L S 47

GP Power Tools Feedback Survey

GP Power Tools includes a dialog to prompt users to provide feedback via
an online survey (http://WinthropDC.com/GPPT/Survey.htm).

The feedback is vital to keep improving GP Power Tools based on what
the Microsoft Dynamics GP community want and need.

The dialog only automatically opens for users with POWERUSER
application security or the SQL Server sysadmin fixed server role. It will
open two days after a new installation of GP Power Tools or immediately
with an upgrade of GP Power Tools.

Once the dialog is opened, a selection of an action from the drop-down list
is required to close the window and continue. You can decide to complete
the Survey which will open the default web browser to the page, or you
can decide to postpone the survey to a later time (next login, tomorrow, 30
days, or after installing the next build).

Once completed, the dialog will display the date and user details.

The dialog can also be opened manually by all users by selecting GP
Power Tools Feedback Survey from the Routines section of the GP Power
Tools Area Page or by selecting GP Power Tools Feedback Survey from
the Options button drop list on the main GP Power Tools Logging Control
window.

http://winthropdc.com/GPPT/Survey.htm

C H A P T E R 2 I N S T A L L A T I O N A N D C O N F I G U R A T I O N

48 G P P O W E R T O O L S

Advanced Mode Access

To be able to access the Advanced Mode features of GP Power Tools, the
current Microsoft Dynamics GP User ID will need to have either the SQL
Server sysadmin fixed server role or membership of the db_owner role on
the system database (DYNAMICS) and the current company database.

If the Microsoft Dynamics GP system password is configured, you will
need to enter this password before the window will open.

Optionally, GP Power Tools can be configured to use its own
Administrator password instead of the Microsoft Dynamics GP system
password. If setup you will need to enter this Administrator password
before the window will open.

Advanced Mode features are protected because they should be used only
by Microsoft Dynamics GP system administrators, partner consultants or
support engineers.

Some Advanced Mode features allow direct access to data stored on the SQL
Server. Other features can be used to disable functionality of Microsoft Dynamics
GP.

 C H A P T E R 2 I N S T A L L A T I O N A N D C O N F I G U R A T I O N

 G P P O W E R T O O L S 49

GP Power Tools and the Web Client

GP Power Tools works with the Web Client, however some features are
disabled as the functionality is not supported in the Web Client
environment.

Below is a summary of features which are disabled or modified when
running on the Web Client:

• Accessing the tool is only via the Quick Links pane on the Home page.
• Macro Logging Mode is disabled.
• ScreenShot cannot capture bitmap images but can save or email System

Status and other files.
• Changing Windows Titles to show User and/or Company is disabled.
• Preventing Windows opening outside the visible desktop is disabled.
• Changing background colors with Company Color Schemes is disabled.
• Microsoft Outlook Client email mode is not supported.
• Changing the launch file from Dictionary Control is disabled.
• Disabling VBA from Dictionary Control is disabled.
• Disabling Visual Studio Tools from Dictionary Control is disabled.
• Remembering position and size of windows is disabled.
• Using splitters on windows with two panes is disabled.
• Desktop Alerts show using a System Dialog.
• User Account Control (UAC) checks are disabled.
• Database Validation is not available when running on the web client.
• Use of Visual Studio dialogs such as MessageBox.Show() is not supported.
• Window Position Memory functionality is disabled.
• Launch File Configuration is not available when running on the web client.
• Virtual Fields are not available on the web client.

50 G P P O W E R T O O L S

 Chapter 3: System Module Features

This chapter includes the following sections:

• Manual Logging Mode
• ScreenShot
• Send Email
• Calculator
• Dex.ini Settings
• Administrator Password Setup*
• Logging Settings*
• Email Settings*
• Configuration Export/Import*
• Configuration Maintenance*
• Setup Backup and Restore*
• Dictionary Assembly Generator Control*
• Additional System Features

* Advanced Mode Feature

 C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

 G P P O W E R T O O L S 51

Manual Logging Mode

The Microsoft Dynamics GP core application runs on the Dexterity
runtime engine from which the following logging facilities are available:

SQL Logging
SQL Logging tracks all communication between the Microsoft Dynamics
GP client and the SQL Server. The default file in which the SQL
communication is stored is named DEXSQL.LOG.

The SQL Logging is tracked on a per workstation basis and will include
information from more than one application session, if more than one session of
Microsoft Dynamics GP is launched from the same application folder. This is
normally the case for Terminal Server and Citrix installations.

Communication with the SQL Server using alternate methods of data access is not
logged. For example; data access via Visual Basic for Applications (VBA) using
ActiveX Data Objects (ADO) will not be captured by SQL Logging.

SQL Profile Tracing
SQL Profile Tracing can be used to log all activity at the SQL Server,
including commands from inside Stored Procedures. The default file in
which the SQL Profile Trace is stored is named Trace.trc.

SQL Profile Tracing is not enabled until it has been setup using the SQL Profile
Trace Settings window under the Logging Settings.

SQL Profile Tracing will capture all activity at the SQL Server for the current
user in the DYNAMICS database and the current company database, so
communication with the SQL Server using alternate methods of data access (as
described above) will be logged.

Dexterity Script Logging
Dexterity Script Logging tracks all Dexterity event script, procedure and
function calls, including the script hierarchy. The default file in which the
script log is stored is named Script.log.

Dexterity Script Profiling
Dexterity Script Profiling tracks the number of calls to each event script,
procedure and function and how much time the calls have taken. It also
tracks all table activity initiated by Dexterity and the time taken. The
default file in which the script profile is stored is named Profile.txt.

Macro Recording
Macro Recording captures all activity performed by the user at the User
Interface. The recorded Macro can be replayed to repeat the actions, or
opened in Notepad.exe for analysis. The default file in which the macro is
stored is named Macro.mac.

C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

52 G P P O W E R T O O L S

Macro Recording can be enabled using the Logging Settings window.

Macro Recording can only work when a single instance of Microsoft Dynamics
GP is running on a workstation, or if multiple instances are running, Macro
Recording will only work on the first instance launched.

Macro Recording is disabled when running on the Web Client.

Using any logging facility will create additional processing overhead for the
application. Logging should only be used when actually looking to resolve an issue
with the system.

Manual Logging Mode
By default, Manual Logging Mode will activate all of these logging options
with a single mouse click without requiring the application to be restarted.
The Dexterity runtime will continue to log activity in the application until
stopped.

You can use the Logging Settings window to select which logging modes
are enabled when using Manual Logging Mode.

To ensure that the log files are not overwritten, the User, Company and
date and time information are appended to the default file name.

To start Manual Logging Mode, click on the Turn On button (highlighted
below).

To stop Manual Logging Mode, click on the same button, now labeled as
Turn Off.

 C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

 G P P O W E R T O O L S 53

Manual Logging can also be turned on using the Ctrl+Shift+F9 keyboard
shortcut and turned off again using the Ctrl+Shift+F10 keyboard shortcut.

You may need to press and release the Alt key on the keyboard to allow
the window menu bar to activate before the shortcut keys work.

When using Manual Logging Mode to look at a specific issue (possible
programming bug or performance problem), it is important to minimize the
information captured in the logs to just the events directly related to the issue. To
achieve this, request the user to perform all the actions in Microsoft Dynamics GP
up to just prior to where the issue occurs. At this point, activate the manual
logging and perform the action that exhibits the issue. Once the issue has
occurred, stop the logging as soon as possible.

The results of the logging can be found in the folder where GP Power
Tools is storing its data files. The default location is the data subfolder
beneath the Microsoft Dynamics GP application folder. The location can be
changed from the default path using the Pathname location for Debugger
Setup files, exports and logs option on the Dex.ini Settings windows (see
section in this chapter).

The individual logs will be stored in the following files:

• GPPTools_<User>_<Company>.log or optionally
GPPTools_<User>_<Company>_<Date>.log

This file will contain all the details of the actions performed by GP Power
Tools including the names of the files created during the logging process.
Any error or warning messages from GP Power Tools will also be logged to
this file. Use the Logging Settings window add the optional date to the file
name.

• DEXSQL_<Date>_<Time>.LOG

These files will contain the SQL Logging results.

• Trace_<User>_<Company>_<Date>_<Time>_<Mode>.trc

These files will contain the SQL Profile Tracing results.

• Script_<User>_<Company>_<Date>_<Time>.log

These files will contain the Dexterity Script Logging results.

• Profile_<User>_<Company>_<Date>_<Time>.txt

These files will contain the Dexterity Script Profiling results.

• Macro_<User>_<Company>_<Date>_<Time>.mac

These files will contain the Macro Recording results.

<User> will be substituted with the current User ID and <Company> will
be substituted with the current Company ID code (InterCompany ID).
<Date>_<Time> will contain the date and time at which the logging was
started in the format YYYYMMDD_HHMMSS. <Mode> will be replaced
with a letter A to E depending on the SQL Profile Trace mode used.

C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

54 G P P O W E R T O O L S

When using the Dex.ini Setting to Start Logging on next startup, the file names
used will not have a User ID or Company ID code as these will not be known
until after login has completed.

There is an optional password which can be used to control access to Manual
Logging Mode. It is set up using the Logging Password field on the General Tab
of the Logging Settings window.

Individual Logging Control
Individual Logging Control allows each of the logging options to be
controlled independently. To access the Individual Logging Control
features it must be enabled via Logging Settings. Then you can click on the
Logging Options button on the GP Power Tools main window.

The pathnames of the resulting files can be left as default, created
automatically based on User, Company and date and time information or
they can be manually specified.

Turning all logging methods on using the Based on date and time and
Based on User, Company, date and time is the same as using Manual
Logging Mode.

Access to Individual Logging Modes can be enabled using the Enable Individual
Logging Modes option on the General Tab of the Logging Settings window.

 C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

 G P P O W E R T O O L S 55

SQL Profile Traces
Active SQL Profile Traces can be viewed by pressing the Show SQL Profile
Traces button on the GP Power Tools main window. This will open the
Active SQL Profile Traces window.

The window defaults to showing GP Power Tools Traces only for the SQL
Profile Trace Application, and the Current User only for SQL Profile Trace
User. A user with the sysadmin rights at the SQL Server level will be
allowed to select All Traces on SQL Server or All Users modes.

Stranded SQL Profile Traces are traces created by GP Power Tools where
the Microsoft Dynamics GP has unexpectedly terminated and left the trace
running at the SQL Server. They can be stopped from this window by
selecting the traces (use control and shift keys to multi-select) and then
click Stop SQL Profile Trace.

The Show SQL Profile Traces button is enabled once SQL Profile Tracing has
been enabled. For more information on setting up and enabling SQL Profile
Tracing please see the section under the Logging Settings window or the section
in the previous chapter.

C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

56 G P P O W E R T O O L S

When logging into Microsoft Dynamics GP, if there are stranded traces for
the current user and company, the following dialog will be displayed.

The user can select whether to stop the stranded traces, leave them
running or open the Active SQL Profile Traces window.

Also when logging into Microsoft Dynamics GP, if there are stranded
traces for the current user in other companies which the user is currently
not logged into, the following dialog will be displayed.

Again the user can select whether to stop the stranded traces, leave them
running or open the Active SQL Profile Traces window.

 C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

 G P P O W E R T O O L S 57

ScreenShot

ScreenShot is a tool which can capture screenshots of all the open
windows in the application as well as a System Status report and then
either email or save the files.

Screenshot creates reduced color bitmaps (4 bits per pixel, 16 colors) to
ensure that the size of the email is kept to a minimum. It can capture all
open windows regardless of whether they are overlaid by other windows.

The System Status report contains information about the system including
registration information, current login information, environmental
information (such as operating system, database and ODBC versions),
product information (including all version and build numbers) and a list
of the attached screenshots.

You can open the GP Power Tools ScreenShot window by selecting
Capture Screenshots from the Transactions section of the GP Power Tools
Area Page or by selecting Capture Screenshots from the Options button
drop-down list on the main window.

You can open it directly from the Tools menu underneath the Microsoft
Dynamics GP menu (highlighted below). It also has the keyboard shortcut
Ctrl+S assigned to it.

C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

58 G P P O W E R T O O L S

If the Standard Toolbar is displayed, you can launch ScreenShot from the
Capture Screenshots button (highlighted below).

You can also use the Capture Screenshots option on Quick Links on the
Home Page. When running on the Web Client, use the Quick Links on the
Home Page to open Capture Screenshots as the other navigation options
are not available.

In addition, Capture Screenshots is also found under the Tools menu on
each individual window of Microsoft Dynamics GP (highlighted below).

You may need to press and release the Alt key on the keyboard to allow
the window menu bar to activate before the shortcut keys work.

Once ScreenShot is activated, the following window will be displayed.

 C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

 G P P O W E R T O O L S 59

Below is a description of the individual fields on the window:

Save Path
This is the root path that will be used when saving screenshots. The
actual path used will be a subfolder based on the user ID and
company ID code.

Include Dex.ini Settings File
This checkbox tells ScreenShot whether to include the Global level
Dex.ini settings file as an attachment for the email. The default setting
for this checkbox can be set up in the Administrator Settings window.

Include User Dex.ini Settings File
This checkbox tells ScreenShot whether to include the User level
Dex.ini settings file as an attachment for the email. The default setting
for this checkbox can be set up in the Administrator Settings window.

Include Current Launch File
This checkbox tells ScreenShot whether to include the launch file,
usually Dynamics.set, as an attachment for the email. The default
setting for this checkbox can be set up in the Administrator Settings
window.

Include info for all databases
This checkbox tells ScreenShot whether to include information for all
databases or just the system database and current company database
in the System Status report. Not including information for all
databases gives better performance on systems with many companies.
The default setting for this checkbox can be set up in the
Administrator Settings window.

C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

60 G P P O W E R T O O L S

Open Windows
This is a list of windows currently open on the system. It is
automatically updated when a form is open or closed. If you open a
secondary window on a form, you can refresh the list with the Refresh
Button. You can use the checkboxes to select which screenshots
should be included.

Info Button
This button can be used to preview the System Status report. You can
use Ctrl-A to select the contents of the report and then Ctrl-C to copy it
to the clipboard.

Refresh Button
This button will refresh the window list with the currently open
windows.

Mark All Button
This button will select all windows (or all highlighted windows) to be
emailed or saved. This button will be disabled when running on the
Web Client.

Unmark All Button
This button will de-select all windows (or all highlighted windows) so
that individual windows can be selected. This button will be disabled
when running on the Web Client.

Email Button
This button will create an email with the selected screenshots and
System Status report attached. The System Status will also be
included as the body of the email. All that the user needs to do is add
a recipient and click Send. The default email settings can be set up in
the Email Settings window.

 C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

 G P P O W E R T O O L S 61

Save Button
This button will save the selected screenshots and System Status
report to a folder based on the Save Path and the current user ID and
company ID code.

Cancel Button
This button will close ScreenShot.

When running on the Web Client, ScreenShot is unable to create the bitmap
images and so this functionality is disabled..

C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

62 G P P O W E R T O O L S

Send Email

You can open the Send Email window by selecting Send Email from the
Transactions section of the GP Power Tools Area Page or by selecting Send
Email from the Options button drop list on the main window.

You can open it directly from the Tools menu underneath the Microsoft
Dynamics GP menu (highlighted below). It also has the keyboard shortcut
Ctrl+E assigned to it.

If the Standard Toolbar is displayed, you can launch Send Email from the
Send Email button (highlighted below).

You can also use the Send Email option on Quick Links on the Home Page.
When running on the Web Client, use the Quick Links on the Home Page
to open Send Email as the other navigation options are not available.

In addition, Send Email is also found under the Tools menu on each
individual window of Microsoft Dynamics GP (highlighted below).

 C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

 G P P O W E R T O O L S 63

You may need to press and release the Alt key on the keyboard to allow
the window menu bar to activate before the shortcut keys work.

The Send Email window can be used to create and send email messages
from inside the Microsoft Dynamics GP application. This window will also
appear to the user when other features in GP Power Tools are configured
to send emails and the option to Preview emails is enabled in the Email
Settings window.

The default email settings can be set up in the Email Settings window.
This includes the Email address to use in the To address and the Default
Subject and Default Body Text.

C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

64 G P P O W E R T O O L S

Email addresses can be in the following formats and multiple addresses
should be separated by a semi-colon (;):

• name@domain.com
• Full Name<name@domain.com>
• Full Name (when in Microsoft Outlook mode only)

Below is a description of the individual fields on the window:

From Field
This is a single email address used as the sender’s email when sending
via SMTP mode. The default value is set up in the Email Settings
window as the Sender’s Email.

To Field
This is the list of email addresses to be used as the To value when
sending the email. The To Button is available when a MAPI compliant
email client is installed and allows the selection of addresses from an
address book. The default value is set up in the Email Settings
window as the Administrator Email.

Cc Field
This is the list of email addresses to be used as the Cc (Carbon Copy)
value when sending the email. The Cc Button is available when a
MAPI compliant email client is installed and allows the selection of
addresses from an address book.

Bcc Field
This is the list of email addresses to be used as the Bcc (Blind Carbon
Copy) value when sending the email. The Bcc Button is available when
a MAPI compliant email client is installed and allows the selection of
addresses from an address book.

Subject
This is the Subject line to be used when sending the email. The default
value is set up in the Email Settings window as the Default Subject.

Attachments
This is a drop-down list containing the paths to the files to be attached
when sending the email.

Add Button
This button opens a dialog to select a file to be added to the list of
attachments.

Remove Button
This button removes the currently selected attachment from the list.

Body
This is the Body text to be used when sending the email. The default
template can be set up in the Email Settings window as the Default
Body Text.

Send Button
This button will process the email and send it. The transport protocols
and other email settings can be set up in the Email Settings window.

 C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

 G P P O W E R T O O L S 65

Cancel Button
This button will abort the email and close the window.

When the Send Email window is manually opened, it behaves as though Preview
and Auto Send options are enabled in the Email Settings window. This is to
ensure that the Send Email window is the only user interface seen when manually
sending emails.

C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

66 G P P O W E R T O O L S

Calculator

You can open the Calculator window by selecting Calculator from the
Transactions section of the GP Power Tools Area Page or by selecting
Calculator from the Options button drop list on the main window.

You can open it directly from the Tools menu underneath the Microsoft
Dynamics GP menu (highlighted below). It also has the keyboard shortcut
Ctrl+Shift+C assigned to it.

If the Standard Toolbar is displayed, you can launch Calculator from the
Calculator button (highlighted below).

You can also use the Calculator option on Quick Links on the Home Page.
When running on the Web Client, use the Quick Links on the Home Page
to open the Calculator as the other navigation options are not available.

In addition, Calculator is also found under the Tools menu on each
individual window of Microsoft Dynamics GP (highlighted below).

 C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

 G P P O W E R T O O L S 67

You may need to press and release the Alt key on the keyboard to allow
the window menu bar to activate before the shortcut keys work.

The Calculator is a touch friendly standard calculator built directly into
Microsoft Dynamics GP. It supports copying and pasting of values using
the clipboard as well as memory functions. It is especially useful on the
Web Client where access to a calculator app might not be possible.

Use the highlighted letters for the Memory Store (S), Memory Add (M), Memory
Recall (R), Delete (D), Clear (C), All Clear (A) and Negate (N) functions. It was
not possible to get the Delete or Backspace keys on the keyboard working.

C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

68 G P P O W E R T O O L S

Dex.ini Settings

You can open the Dex.ini Settings window by selecting Dex.ini Settings
from the Transactions section of the GP Power Tools Area Page or by
selecting Dex.ini Settings from the Options button drop list on the main
window.

The Dex.ini Settings window allows control of some system and GP Power
Tools options which are stored in the Dex.ini file. It is divided into four
tabbed sections.

For Microsoft Dynamics GP 2013 onwards, all settings in this window are stored
in the Global level Dex.ini with the exception of the Enable Debugger Setup Mode
and Automatically open GP Power Tools main window after login options which
are stored in the User level Dex.ini.

Debug Tab
The Debug tab contains settings related to the use of the logging and
debugging features of Microsoft Dynamics GP as well as settings for GP
Power Tools itself.

 C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

 G P P O W E R T O O L S 69

The following settings are available:

Enable SQL Logging on next login
This option will update the SQLLogSQLStmt and
SQLLogODBCMessages Dex.ini settings to enable logging to the
DEXSQL.LOG file on next login.

Pathname location for SQL Log file
This option will update the SQLLogPath Dex.ini setting to control the
location of the DEXSQL.LOG file. This option controls where the log
file is initially created. If using Automatic Trigger Mode or Manual
Logging Mode, the log file will be renamed and possibly moved to a
different folder.

Rename DEXSQL.LOG at the beginning of each day
This option is added by GP Power Tools to stop the DEXSQL.LOG file
growing too large. It renames the log each day. It stores the date when
it last renamed the file in the SQLLogRename Dex.ini setting in the
format YYYYMMDD. This option should not be used with Automatic
Trigger Mode.

Enable Dexterity Debug Menu on next login
This option will update the ScriptDebugger Dex.ini setting to control
whether the Debug Menu will be available on next login.

Dexterity Debug Menu Product
This option updates the ScriptDebuggerProduct Dex.ini setting to
control the default dictionary Product ID context for the Debug Menu.

Show Debug Messages on next login
This option updates the ShowDebugMessages Dex.ini setting to
control whether internal debug message dialogs are displayed when
the Debug Menu is enabled.

If the Debug Menu is enabled, it is recommended that the Show Debug
Messages option is not enabled for a production system. Having it enabled
can cause additional dialogs to be displayed that could be confusing to users.

Enable Enhanced Script Log on next login
This option updates the ScriptLogEnhanced Dex.ini setting to control
whether the enhanced Dexterity Script Log features are enabled.
Enabling this option adds time stamps and flagging of background
processes to the script log. This option is enabled by default by GP
Power Tools.

Enable GP Power Tools Setup Mode
Enabling this GP Power Tools option will prevent Triggers marked to
Start Trigger Automatically on Login from starting. Setup Mode is
designed to be used by consultants when setting up GP Power Tools
for use at a customer’s site. It uses the MBS_Debug_SetupMode
Dex.ini setting.

 GP Power Tools Setup Mode should not be enabled for a production system.
It is designed to only be used on test systems or support engineer or partner
consultant’s workstations.

C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

70 G P P O W E R T O O L S

Automatically open Logging Control window after login
This option will make the GP Power Tools Logging Control main
window open after a user logs in. It uses the MBS_Debug_AutoOpen
Dex.ini setting.

Folder location for logs and export files
This option allows the location for any table exports and captured log
files to be specified. It uses the MBS_Debug_Path Dex.ini setting.

Start Logging on next startup only
Enabling this GP Power Tools option will automatically start Manual
Logging Mode on application startup. This enables the capture of the
logs during the login process. This option will turn itself off after it
has been used once. It uses the MBS_Debug_LogOnStartup Dex.ini
setting.

SQL Logging
When using Logging on next startup, you can specify which logging
options to enable. This option enables SQL Logging. It uses the
MBS_Debug_LogOnStartup Dex.ini setting.

Dexterity Script
When using Logging on next startup, you can specify which logging
options to enable. This option enables Dexterity Script Logging. It uses
the MBS_Debug_LogOnStartup Dex.ini setting.

Dexterity Profile
When using Logging on next startup, you can specify which logging
options to enable. This option enables Dexterity Profile Logging. It
uses the MBS_Debug_LogOnStartup Dex.ini setting.

You can use the Reset Window Positions Button to clear the Dex.ini
settings used for remembering the last window size, position and state for
the GP Power Tools windows. Be sure all other GP Power Tools windows
are closed when using this option.

 C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

 G P P O W E R T O O L S 71

Startup Tab
The Startup tab contains settings related to the startup of Microsoft
Dynamics GP.

The following settings are available:

Name shown on Application title bar during initial loading
This option will update the ApplicationName Dex.ini setting to
control the name shown by the Dexterity Runtime title bar during
application startup. Entering a value into this field will override the
default application name of “Dexterity Runtime” while the application
is launching. Once the application has launched, the title is updated
with the product name as shown in the Dynamics.set launch file.

Automatically Install Chunk Files without displaying dialog
This option will update the AutoInstallChunks Dex.ini settings to
allow chunk files to install without the user being prompted.

Suppress Sample Company Date Warning
This option will update the SAMPLEDATEMSG Dex.ini setting to
allow Microsoft Dynamics GP to login to the Fabrikam sample
company without displaying the date warning dialog.

C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

72 G P P O W E R T O O L S

Use SQL Login Compatibility Mode
This option will update the SQLLoginCompatibilityMode Dex.ini
setting to allow Microsoft Dynamics GP to continue attempting to
login using backwards compatible password encryption methods.

If you continue to use SQL Login Compatibility Mode, a failed login attempt
will register as four attempts at the SQL Server. This can prematurely lock
out a user when an incorrect password is entered (when enforce password
policy is enabled for the SQL Login and the SQL Native Client is used for the
ODBC DSN configuration).

Add Application Details to GPPTools_<User>_<Company> Log
This option will add an entry into the
GPPTools_<User>_<Company>.log file each time a user logs into a
company. It uses the MBS_Debug_LogAppDetails Dex.ini setting.

Enable selection of Data Server on Login
This option controls whether the Server drop-down list on the Login
window is enabled. It uses the EnableServerDropDown Dex.ini
setting.

Default last User ID used on login
This option controls whether the last User ID used is defaulted in on
the Login window. It uses the DefaultLastUser Dex.ini setting.

Default last User ID used on login to Windows User
This option controls whether the last User ID used is defaulted in on
the Login window to the current Windows User ID. It uses the
DefaultLastUser Dex.ini setting.

Default last Company used on login
This option controls whether the last Company used is defaulted in on
the Company Selection window. It uses the DefaultLastCompany
Dex.ini setting.

Update last User ID and Company on exit
This option controls whether the last User ID and Company used are
stored in the Dex.ini when exiting. This is useful when running
multiple instances of Microsoft Dynamics GP, the last closed instance
will record its settings rather than the last logged in settings. It uses
the MBS_Debug_UpdateLastUserOnExit Dex.ini setting.

Disable Ribbons for workstation on next login
This option can disable Ribbons on the desktop client for the current
workstation. It uses the EnableWCRibbons Dex.ini setting.

Open Application Maximized on next login
This option controls whether the application opens full screen for the
current workstation. It uses the WindowMax Dex.ini setting.

Application Window Position
These options control the default application window position when
not maximized for the current workstation. It uses the WindowPosX
and WindowPosY Dex.ini settings.

 C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

 G P P O W E R T O O L S 73

Application Window Size
These options control the default application window size when not
maximized for the current workstation. It uses the WindowWidth and
WindowHeight Dex.ini settings.

C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

74 G P P O W E R T O O L S

Reports Tab
The Reports tab contains settings related to the behavior and debugging of
the Microsoft Dynamics GP Report Writer.

The following settings are available:

Export Body Section as One Line
This option will update the ExportOneLineBody Dex.ini setting to
control how the body section on a text report is printed. This option
can be used when creating reports to be exported as tab-delimited or
comma-delimited text files.

Number of Lines Per Page when Exporting Reports (inc. PDF)
This option will update the ExportLinesPerPage and
ExportPDFLinesPerPage Dex.ini settings to control the number of
lines on a report page when the report is exported rather than printed
to a file (including PDF files).

Suggested values for this setting are 72 for A4 paper in portrait, 51 for A4
paper in landscape, 68 for US Letter paper in portrait and 52 for US Letter
paper in landscape. Some trial and error testing might be required to find the
best value.

 C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

 G P P O W E R T O O L S 75

Activate Debug Logging for the Report Writer
These options will update the DebugRW Dex.ini setting to ask the
Report Writer to output a debugging log to the file DebugRW.txt. The
actual value written to the Dex.ini is shown in the DebugRW Value
field.

Mark All
Use this button to activate all the Report Writer debug logging.

Unmark All
Use this button to turn off Report Writer debug logging.

Activate Debug Font Logging for the Report Writer
This option will update the DebugFonts Dex.ini setting enable logging
of font selections made by the Report Writer. The results will be
written to a DebugLog.txt file. For more information see Knowledge
Base (KB) article 870341:

http://support.microsoft.com/kb/870341

Activate Word Template Processing Engine Logging
This option will update the TPELogging and the
KeepTemplateTempFiles Dex.ini settings to log the workings of the
Template Processing Engine (TPE). The following files will be created
in the %TEMP% folder: the TemplateProcessing*.txt file, the document
file and the template file.

Disable Screen Output window position memory
This option can be used to disable the window position memory for
the Report Writer Screen Output window. It will update the
MBS_Debug_DisableScreenOutputMemory and the
MBS_Debug_WinScreenOutput Dex.ini settings.

Restore Legacy Print Dialog (Registry Setting, Windows 11 22H2
or later)
This option restores the legacy print dialog which users are expecting
rather than using the modern dialog added in Windows 11 22H2
release.

From Build 30 onwards the Legacy Print Dialog is restored during the
installation of GP Power Tools. This is because it has features that Microsoft
Dynamics GP uses which are not available on the modern dialog.

http://support.microsoft.com/kb/870341

C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

76 G P P O W E R T O O L S

Other Tab
The Other tab contains other miscellaneous settings for use with Microsoft
Dynamics GP.

The following settings are available:

Suppress Date Change Dialog
This option will update the SuppressChangeDateDialog Dex.ini
setting to prevent the dialog to change the User Date from being
displayed at midnight. Using this option will also stop the date from
being changed in Microsoft Dynamics GP (see option below).

Force Date Change when Dialog is suppressed
This option will update the SuppressChangeDateForce Dex.ini setting
to force the User Date to be changed at midnight when the dialog is
suppressed with the above option. This functionality can also be
overridden using the option that is part of Automatic Logout in the
Administrator Settings window.

Show Advanced Macro Menu
This option will update the ShowAdvancedMacroMenu Dex.ini
setting to enable the Advanced Macro Menu from the Tools >> Macro
menu.

 C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

 G P P O W E R T O O L S 77

Show All Menu Items
This option will update the ShowAllMenuItems Dex.ini setting to
show all menu items, even when the module is not installed, not
registered or access has been denied.

Suppress Sound from Application
This option will update the SuppressSound Dex.ini setting to suppress
all sound from Microsoft Dynamics GP.

Display More Info button on Process Monitor
This option will update the QueueMoreInfo Dex.ini setting to display
the More Info button on the Process Monitor window (Microsoft
Dynamics GP >> Process Monitor).

Disable closing of the OLE Contain.exe on exit
This setting stops the application from attempting to close the OLE
Contain.exe program on exit. It can improve performance when
exiting the application. It updates the OLEClose Dex.ini setting.

Integration Manager: Show Dynamics while importing (for
debugging)
This setting helps with debugging Integration Manager by displaying
the application during the imports. It updates the ShowDynamics
Dex.ini setting.

Integration Manager: Redraw UI when importing (for debugging)
This setting helps with debugging Integration Manager by forcing the
UI to redraw during the imports. It updates the DUIRedraw Dex.ini
setting.

Enable Scrollbar width override
This option will update the MaxSWScrollbarSize Dex.ini setting to
override the width of scrollbars in Microsoft Dynamics GP. This can be
helpful when changing DPI settings makes the scrollbars too wide, so
that they cover up the contents of fields. The maximum value for this
setting is the default value of 17.

Windows Bitmap Font Registry Settings
This option will attempt to change the registry to update the font files
used for bitmap fonts under Windows 7 and later. These settings are
initially created when the operating system is first installed and are
not changed when changing the DPI setting for the system. If the fonts
in the Microsoft Dynamics GP windows are not being displayed at the
correct size, use this option to change the sizes.

Windows Bitmap Scaling Settings
These options will attempt to update the registry to enable the Bitmap
Scaling functionality of Windows 8 or later and create a Manifest file
to enable Bitmap Scaling for the current instance of the Microsoft
Dynamics GP application.

C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

78 G P P O W E R T O O L S

Bitmap Scaling can be used to tell the operating system that an
application does not automatically handle high DPI settings (anything
greater than 100%). The result is that the application is rendered off
screen at 100% and then scaled to the correct percentage on the
display. Using a DPI setting on the monitor which is a multiple of
100% (such as 200% or 300%) will produce the clearest images with no
blurring of fonts, otherwise expect some fuzziness.

From Build 29 onwards the Windows Bitmap Scaling Settings will be
enabled during the installation of GP Power Tools while permissions are
elevated. There is no harm enabling the settings on a system using 100% DPI
as it will have no effect but will take effect if using a higher DPI setting.

A restart of the operating system is required for these settings to take effect.

On an operating system with User Account Control (UAC) enabled, Registry
changes are only allowed if the application has been launched using Run as
Administrator. If access to the registry is denied the following warning will
be displayed:

 C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

 G P P O W E R T O O L S 79

Administrator Password Setup

You can open the Administrator Password Setup window by selecting
Administration Password Setup from the Setup section of the GP Power
Tools Area Page or by selecting Administration >> Administrator
Password Setup from the Options button drop list on the main window.
You will also need to be added the GP POWER TOOLS PASSWORD
Security Role to access this window. This is an Advanced Mode feature.

The Administrator Password Setup window can be used to specify a
separate password to the System Password to be used to before an
Advanced Mode feature window can be opened. This would allow users
to have access to GP Power Tools administrator level windows without
having to provide them with the System Password. Note that the user will
still need the appropriate application level and SQL Server level security
access.

The following is a description of the individual fields on the window:

Use separate password instead of System Password
This checkbox tells GP Power Tools to use a separate GP Power Tools
Administrator Password instead of the System Password when
opening Advanced Mode feature windows.

Don’t ask for users who have access to this window
This checkbox tells GP Power Tools to not ask for the separate GP
Power Tools Administrator Password for users who have application
security access to the Administrator Password Setup window, except
window opening this window. Add the GP POWER TOOLS
PASSWORD Security Role to a user for access to this window.

Password Fields
These fields allow the separate GP Power Tools Administrator
Password to be changed.

C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

80 G P P O W E R T O O L S

Challenge 'sa' user with Administrator password on login
This checkbox will force the 'sa' user to have to correctly enter the
Administrator password before they can select a company during
login. If they fail to enter the password, they will be unable to
complete logging in. This feature is designed to prevent IT staff from
easily accessing the Microsoft Dynamics GP application.

If you enable the separate GP Power Tools Administrator Password, but don’t
actually set a new password, you can disable GP Power Tools asking for a
password, without having to remove the System Password.

 C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

 G P P O W E R T O O L S 81

Logging Settings

You can open the Logging Settings window by selecting Logging Settings
from the Setup section of the GP Power Tools Area Page or by selecting
Administration >> Logging Settings from the Options button drop list on
the main window. This is an Advanced Mode feature.

The Logging Settings window can change the settings used with the GP
Power Tools logging features.

The following is a description of the individual fields on the window:

Administrator Controlled Shared Folder Location for logs and
export files.
You can select a folder in a shared location for all logs and export files
to be written to. This setting is automatically rolled out to all
workstations. Therefore avoiding the need to visit individual
workstations to change the Pathname location for Debugger Setup
files, exports and logs setting in the Dex.ini Settings window
manually. It will update the MBS_Debug_Path Dex.ini setting on
login.

The Administrator Controlled Shared Folder Location Setting is stored in the
syUserDefaults (SY01402) table in the DYNAMICS SQL Database. On
login, the setting is checked and the Dex.ini setting on the current
workstation is updated if necessary. The pathname can be specified using a
UNC path in the format \\Server\Share\Folder\.

Logging Password
You can specify an optional password to be requested before Manual
Logging Mode can be enabled.

file://///Server/Share/Folder/

C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

82 G P P O W E R T O O L S

Enable Individual Logging Modes
You use this option to enable Individual Logging Control. By default
this option is disabled which hides the Logging Options button on the
GP Power Tools main window

Capture SQL Log
You can select which of the logging modes to enable, this option
enables the SQL Logging when Manual Logging Mode is used.

Capture SQL Profile Trace
You can select which of the logging modes to enable, this option
enables the SQL Profile Tracing when Manual Logging Mode is used.

SQL Profile Tracing is not enabled until it has been setup using the SQL
Profile Trace Settings window.

SQL Profile Trace Mode
When using SQL Profile Tracing, you can use this option to select the
type of SQL Profile Trace created. You can select between Small,
Medium, Large and Performance. The Other mode can be used in
conjunction with a customized MBS_SQL_Tracing_API_5 stored
procedure in the DYNAMICS database.

Capture SQL Log
You can select which of the logging modes to enable, this option
enables the SQL Logging when Manual Logging Mode is used.

Capture Dexterity Script Log
You can select which of the logging modes to enable, this option
enables the Dexterity Script Logging when Manual Logging Mode is
used.

Capture Dexterity Script Profile
You can select which of the logging modes to enable, this option
enables the Dexterity Script Profiling when Manual Logging Mode is
used.

Capture Macro Recording
You can select which of the logging modes to enable, this option
enables the Macro Recording when Manual Logging Mode is used.

Macro Recording can only work when a single instance of Microsoft
Dynamics GP is running on a workstation, or if multiple instances are
running, Macro Recording will only work on the first instance launched.

When Manual Logging is stopped
You can select whether you want to email a zipped archive file of the
logs captured by Manual Logging Mode when the logging is stopped.
You can select to email logs automatically, or to ask before emailing
logs.

 C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

 G P P O W E R T O O L S 83

Maximum email attachment file size for zipped log files
Use this option to select the maximum size allowed when emailing the
zipped archive file containing the log files captured by Manual
Logging Mode.

The maximum email attachment file size would be limited by the maximum
attachment size allowed by the email services being used. Please contact the
administrator of the email system to check what the maximum size allowed is.

Rename log each day
Select this setting to create a new GP Power Tools Log file for each
user and company each day. This avoids the issue where the single
undated file can get too large over time.

Number of days to keep logs
Use this option to control how many days’ worth of GP Power Tools
logs is kept before they are automatically removed. This prevents the
logging folder from getting filled up with too many files.

Edit SQL Profile Trace Settings
This button will open the SQL Profile Trace Settings window (see
section below).

C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

84 G P P O W E R T O O L S

SQL Profile Trace Settings
The SQL Profile Trace Settings window contains all the options to enable
SQL Profile Tracing and create the database objects needed.

The SQL Profile Tracing functionality of GP Power Tools creates a series of
SQL Stored Procedures in the DYNAMICS system database:

• MBS_SQL_Tracing_API
• MBS_SQL_Tracing_API_1 (Small)
• MBS_SQL_Tracing_API_2 (Medium)
• MBS_SQL_Tracing_API_3 (Large)
• MBS_SQL_Tracing_API_4 (Performance)
• MBS_SQL_Tracing_API_5 (Other)
• MBS_SQL_Tracing_Read
• MBS_SQL_Tracing_Version

 C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

 G P P O W E R T O O L S 85

The following is a description of the individual fields on the window:

Single User Authentication Mode
Single User Authentication Mode uses a single Windows user to create
the SQL Profile Traces. This is the preferred Authentication Mode as it
does not require individual users to have their privileges elevated.

If the Authentication Mode is already enabled and you change the
setting, you will receive a dialog to process the necessary changes at
the SQL Server. It is recommended that you allow the system to make
the changes.

If the SQL Profile Trace SQL Components are already created and you
change the setting, you will receive a dialog to recreate them. It is
recommended that you allow the system to make the changes.

Multi User Authentication Mode
Multi User Authentication Mode uses the individual Dynamics GP
users to create the SQL Profile Traces and only uses the Windows user
as a proxy for the xp_cmdshell command. Using this mode will
elevate individual users’ rights to allow them to create traces.

If the Authentication Mode is already enabled and you change the
setting, you will receive a dialog to process the necessary changes at
the SQL Server. It is recommended that you allow the system to make
the changes.

C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

86 G P P O W E R T O O L S

If the SQL Profile Trace SQL Components are already created and you
change the setting, you will receive a dialog to recreate them. It is
recommended that you allow the system to make the changes.

Windows Administrator User ID
Depending on Authentication Mode, this Windows User ID is used to
create traces and/or as a proxy for the xp_cmdshell command.

The user can be either a local user on the SQL Server machine or a domain
user. The user must be added to the local administrator group on the SQL
Server machine. It is recommended that the password for the user is set to not
expire.

The user does not need to be manually added to SQL Server, GP Power
Tools will perform that step.

When you enter the User ID, you will receive a dialog asking to
process the steps to enable the Authentication mode. It is
recommended that you allow the system to make the changes.

 C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

 G P P O W E R T O O L S 87

If the Authentication Mode is already enabled and you change the
User ID, you will receive a dialog to process the necessary changes at
the SQL Server. It is recommended that you allow the system to make
the changes.

If you remove the User ID, you will receive a dialog asking to process
the steps to disable the Authentication mode. It is recommended that
you allow the system to make the changes.

If the SQL Profile Trace SQL Components are already created and you
change the User ID, you will receive a dialog to recreate them. It is
recommended that you allow the system to make the changes.

C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

88 G P P O W E R T O O L S

Process Single User Mode SQL Server Action
There are seven setting changes required on SQL Server to allow
Single User Authentication Mode to work. This button allows the
steps to enable and disable the settings to be run individually or as one
action.

As the system already prompts for these actions to be executed
automatically, you would not normally need to manually run the
actions using this button.

If a new user is added to Microsoft Dynamics GP, you will need to run the
Grant IMPERSONATE permission to all users option again to allow the new
user to be able to create traces.

The Enable xp_cmdshell proxy account with User ID option will ask
for the password for the Windows Administrator User ID.

The password is not validated at this time. If it is not entered correctly, it will
prevent the SQL Profile Trace File being copied to the Debugger Settings
folder when the trace is stopped. The error will show in the
GPPTools_<User>_<Company>.log file.

As each step is processed a Desktop Alert is displayed to show that the
actions completed.

Process Multi User Mode SQL Server Action
There are four setting changes required on SQL Server to allow Multi
User Authentication Mode to work. This button allows the steps to
enable and disable the settings to be run individually or as one action.

As the system already prompts for these actions to be executed
automatically, you would not normally need to manually run the
actions using this button.

If a new user is added to Microsoft Dynamics GP, you will need to run the
Grant IMPERSONATE permission to all users option again to allow the new
user to be able to create traces.

The Enable xp_cmdshell proxy account with User ID option will ask
for the password for the Windows Administrator User ID.

 C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

 G P P O W E R T O O L S 89

The password is not validated at this time. If it is not entered correctly, it will
prevent the SQL Profile Trace File being copied to the Debugger Settings
folder when the trace is stopped. The error will show in the
GPPTools_<User>_<Company>.log file.

As each step is processed a Desktop Alert is displayed to show that the
actions completed.

Maximum Trace file size
Use this setting to control the maximum size a SQL Profile Trace file
can get to before a new file is created. The default value for this field is
25 MB.

If you set the field back to zero, it will restore the default values for
Maximum Trace file size and Maximum number of Trace files.

If the SQL Profile Trace SQL Components are already created and you
change this setting, you will receive a dialog to recreate them. It is
recommended that you allow the system to make the changes.

Maximum number of Trace files
Use this setting to control the number of trace files created by the SQL
Profile Trace. As the trace file reaches the Maximum Trace file size a
new trace file will be created with a numbered suffix added to the
filename. This setting controls how many of the individual trace files
are kept and will delete the oldest trace files as new ones are created.
The default value for this field is 10.

If you set the field back to zero, the trace will only create a single file
which will grow until the trace is stopped.

C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

90 G P P O W E R T O O L S

If the SQL Profile Trace SQL Components are already created and you
change this setting, you will receive a dialog to recreate them. It is
recommended that you allow the system to make the changes.

Folder on local drive on SQL Server
This is the path to a folder that is local to SQL Server that is to be used
as a temporary location for SQL Profile Trace files while they are being
created.

The folder must use a path that is valid as seen from the SQL Server machine.
All Microsoft Dynamics GP Users as well as the Windows Administrator
User ID must have Full Control rights to this folder.

When you enter the path, you will receive a dialog asking to create the
SQL Profile Trace SQL Components (stored procedures). It is
recommended that you allow the system to make the changes.

If the SQL Profile Trace SQL Components are already created and you
change the path, you will receive a dialog to recreate them. It is
recommended that you allow the system to make the changes.

 C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

 G P P O W E R T O O L S 91

UNC Network shared path to above Folder
This is the path to the local folder on the SQL Server from the previous
field once it has been shared on the network.

The folder must be shared so that all Microsoft Dynamics GP Users as well as
the Windows Administrator User ID have Full Control rights to this folder.

This path is used after the SQL Profile Trace is created to copy the
trace files from the temporary location on the SQL Server to the
Debugger Settings location.

Copy SQL Profile Trace files to Logs and Export files location
This checkbox can be used to control where the SQL Profile Trace files
are copied from the temporary location on the SQL Server to the Logs
and Export files location.

It is recommended that this setting is enabled.

Create SQL Profile Trace SQL Components
This button can be used to manually create the SQL Profile Trace SQL
Components (stored procedures) on the SQL Server.

Remove SQL Profile Trace SQL Components
This button can be used to manually remove the SQL Profile Trace
SQL Components (stored procedures) on the SQL Server.

C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

92 G P P O W E R T O O L S

Email Settings

You can open the Email Settings window by selecting Email Settings from
the Setup section of the GP Power Tools Area Page or by selecting
Administration >> Email Settings from the Options button drop list on the
main window. This is an Advanced Mode feature.

The Email Settings window allows you define default values and server
transport protocols and security settings to be used when sending emails
from GP Power Tools.

The following is a description of the individual fields on the window:

Administrator Email
This field can be used to specify the default To email address(es) when
sending emails.

Email addresses can be in the following formats and multiple
addresses should be separated by a semi-colon (;):

• name@domain.com
• Full Name<name@domain.com>
• Full Name (when in Microsoft Outlook mode only)

Default Subject

This field can be used to specify the default Subject line for the Send
Email window.

 C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

 G P P O W E R T O O L S 93

Default Body Text for Send Email window
This button can be used to specify the default Body Text line for the
Send Email window. This can be used to create a standard template
for reporting issues to the system administrator.

Click on the Edit Body Text Button to open the Edit Body Text
window.

Standard Signature to add to all emails
This button can be used to create a standard signature to add to the
bottom of all emails sent from GP Power Tools. If no signature is
defined, the text in the screenshot below will be used.

Click on the Edit Signature Button to open the Edit Signature window.

The signature can be customized with placeholders to insert information
about the current session into the email when it is sent. You can also use the
checkbox below to add session details automatically.

C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

94 G P P O W E R T O O L S

Add session details below signature when sending emails
This checkbox can be used to automatically include details of the
current session of Microsoft Dynamics GP below the signature when
sending emails.

Email Mode
This field can be used to select whether the email engine is using a
Microsoft Outlook Client (default setting) or a SMTP Server via CDO
(Collaboration Data Objects) to send emails. Using SMTP instead of
Outlook is useful for a Terminal Server environment where it is
unlikely that an Outlook client is installed and set up on the Terminal
Server.

You can also select to use any MAPI Compliant Client for sending
emails. This will work for email clients other than Outlook if they are
MAPI compliant. As Outlook is MAPI compliant, this mode also
works for Outlook.

You can also select to use Exchange Web Services for sending emails.
This will work directly with the Exchange Server and so does not
require an email client to be installed.

For version 18.3 (for Microsoft Dynamics GP) and later, you can also
select to use Multi-Factor Authentication for sending emails. This will
use the MFA functionality added to Microsoft Dynamics GP to send
emails.

Build 29 of GP Power Tools also adds SMTP Server via .Net Addin
mode which supports the TLS protocol required to connect to an
Office 365 Exchange Server via SMTP (smtp.office365.com:587).

When running on the Web Client, the Microsoft Outlook Client email mode
is not supported. It is recommended to use the SMTP or Exchange modes
which do not require an email client.

Preview
This option controls if the Send Email window is displayed whenever
an email is sent.

Auto Send
This option controls if the email is automatically sent when an email is
submitted. If Preview is unchecked, the email is submitted
immediately, or if Preview is selected the email is submitted when the
Send Button is clicked.

When using SMTP mode, Auto Send is always enabled. When using
Outlook mode, this option controls whether the email is shown in the
Outlook client before it is sent, without Auto Send the user will need
to click the Send button in Outlook.

Send HTML
This option controls whether emails generated in GP Power Tools are
sent as plain text or as HTML.

 C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

 G P P O W E R T O O L S 95

Sender’s Email
This field must contain a single valid email address for use as the
sender’s email address when in SMTP mode. It is recommended to
create a new email address for emails sent from Microsoft Dynamics
GP.

The email address can be in the following formats:

• name@domain.com
• Full Name<name@domain.com>

SMTP Server

This field defines the SMTP Server’s address. It can be specified as a
name or as an IP address.

SMTP Server Port
This field defines the SMTP Server Port to use, the default value is 25.

Authentication
This drop-down list specifies what level of authentication is required
to send emails via the SMTP Server. The options are:

• No Authentication Required
• Basic Authentication Required
• NTLM Authentication Required
• Basic Authentication & SSL Required
• NTLM Authentication & SSL Required

You can specify whether Basic or NTLM (Windows NT LAN
Manager) Authentication is to be used and whether SSL (Secure
Sockets Layer) should be used.

User ID
This field contains the user ID to login into the SMTP Server with. This
would normally be the user ID associated with the Sender’s Email
defined above.

Password
This field contains the password to login into the SMTP Server with.
This would normally be the password associated with the Sender’s
Email defined above.

C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

96 G P P O W E R T O O L S

Configuration Export/Import

You can open the Configuration Export/Import window by selecting
Configuration Export/Import from the Routines section of the GP Power
Tools Area Page or by selecting Maintenance >> Configuration
Export/Import from the Options button drop list on the main window.
This is an Advanced Mode feature.

The Configuration Export/Import window can be used to export and
import selected GP Power Tools settings.

Below is a description of the individual fields on the window:

Export Button
This button will export the selected settings to the file name selected.

Import Button
This button will import the contents of the selected file name. It will
open the Import Settings File window to display the contents of the
settings file. You can then select the objects that will be imported from
the settings file.

 C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

 G P P O W E R T O O L S 97

Clear Button
This button will clear any selections and reset the File Name and
Transfer User and Company Details with Triggers checkbox.

File Name
This is the file name used for exporting and importing. The file should
use the extension .dbg.xml.

Export linked custom resources package on export and import
package on import
This checkbox enables exporting and importing of custom resources
from Customization Maintenance along with the GP Power Tools
resources.

Transfer User and Company details
This checkbox selects whether the user and company selection for
triggers and products is exported when the trigger or Dictionary
Control product is exported.

If you select a Development Project from the tree, all triggers, scripts and
parameter lists assigned to that project will automatically be selected. If you select
a trigger, script or parameter list which belongs to a project, that project will be
selected, but no other components will be selected. If you do not want to export the
project, you can unselect it.

If you want to export all components of a Project, use the Project Setup window.

C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

98 G P P O W E R T O O L S

Configuration Maintenance

You can open the Configuration Maintenance window by selecting
Configuration Maintenance from the Routines section of the GP Power
Tools Area Page or by selecting Maintenance >> Configuration
Maintenance from the Options button drop list on the main window. This
is an Advanced Mode feature.

The Configuration Maintenance window can be used to clear the contents
of the GP Power Tools settings tables. Click on the column headings to re-
sort the list of tables.

The following is a description of the individual fields on the window:

Clear Button
This button will clear the contents of the selected tables. You can use
the shift and control keys to select multiple tables.

Redisplay Button
This button will refresh window and update the record count.

 C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

 G P P O W E R T O O L S 99

The system will always have a trigger ID named DEFAULT. This trigger will be
automatically added when the MBS_TriggerSetup table is cleared.

To reset the Security Activity Tracking data used by the Security Log window,
clear the contents of the MBS_SecurityLog and MBS_SecurityLogDetail tables.

To reset the User Activity Tracking data used by the User Activity Log window,
clear the contents of the MBS_ActivityLog, MBS_ActivityLogDetail and
MBS_ActivityLogMachine tables.

C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

100 G P P O W E R T O O L S

Setup Backup and Restore

You can open the Setup Backup and Restore window by selecting Setup
Backup and Restore from the Routines section of the GP Power Tools Area
Page or by selecting Maintenance >> Setup Backup and Restore from the
Options button drop list on the main window. This is an Advanced Mode
feature.

The Setup Backup and Restore window can be used to re-import a
Debugger.xml file. It can also be used to backup and restore all settings
from GP Power Tools.

The following is a description of the individual fields on the window:

Pathname for Debugger.xml file
This list contains the Dex.ini settings to be checked on login. The
setting can be specified with an exact value (this is needed to add a
new setting.

Backup Button
This Button will back up all settings to a file called Debugger.xml in
the folder specified.

Restore Button
This will read the Debugger.xml file from the specified folder and
replace all the settings from the imported file.

You could use this window to reimport a Debugger.xml file if the file imported
during the upgrade from a previous install was not the correct file. It can also be
used to keep a backup of all settings. If you want to export and import individual
settings, use the Configuration Export/Import window.

This window exports and imports all settings for GP Power Tools. It completely
overwrites the target contents in the Debugger.xml file (for Backup) and the GP
Power Tools SQL Tables (for Restore). Use with caution.

 C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

 G P P O W E R T O O L S 101

Dictionary Assembly Generator Control

You can open the Dictionary Assembly Generator Control window by
selecting Dictionary Assembly Generator Control from the Routines
section of the GP Power Tools Area Page or by selecting Maintenance >>
Dictionary Assembly Generator Control from the Options button drop list
on the main window. This is an Advanced Mode feature.

The Dictionary Assembly Generator Control window can be used to check
for the existence of product dictionary assembly DLL files and create them
if needed. It uses the DAG.EXE tool which is installed with GP Power
Tools.

The following is a description of the individual fields on the window:

Dictionary Code
This field contains the default product dictionary identifier used when
creating the pathnames for the associated Dictionary Assembly DLL
files. It can be changed if desired when a product is not using the
default name based on the product name listed in the Dynamics.set
launch file.

OK Button
This button will close the Dictionary Assembly Generator Control
window.

Generate Button
Use this button to generate the Application Dictionary Assembly, the
Metadata Assembly (if the product contains Service Based
Architecture (SBA) service procedures, and the Modified Forms
Dictionary Assembly (if the Modifier has been used for the product).

C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

102 G P P O W E R T O O L S

Clean Up Button
Use this button to search for and remove renamed backup copies of
Dictionary Assembly DLL files created when using the Generate
Button. The backups are created as the DLL files might still be in use
and can be renamed but not deleted.

Redisplay Button
This button will refresh the contents displayed on the Dictionary
Assembly Generator Control window.

The Dictionary Assembly Generator Control window can also be opened
from the .Net Execute Setup References window and from the Resource
Information Script Parameters window.

The Dictionary Assembly Generator Control window runs the DAG.EXE tool to
create Dictionary Assembly DLL files based on the installed Product Dictionaries
It renames any existing DLLs as they might be in use and cannot be deleted. You
can use the Clean Up button after an application restart to remove the renamed
files.

After using this window to recreate Assembly DLLs, you will probably need to
restart Microsoft Dynamics GP to use the newly created DLL files.

 C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

 G P P O W E R T O O L S 103

Additional System Features

GP Power Tools adds some extra features to help users. Below is a
summary of the features:

Login Remember User
GP Power Tools fixes an issue where the Remember User feature on the
login window does not work when user level Dex.ini files are being used.
It makes sure that the RememberUser Dex.ini Setting is stored in the
correct location.

Remember Last Company
GP Power Tools remembers the last company logged into and selects that
company when the Company Selection window is opened. The
information is stored in the SQLLastCompany Dex.ini Setting.

User Preferences Apply
GP Power Tools fixes the User Preferences window to that is the Apply
button is used more than once without closing the window, it now works.

Find a Window
GP Power Tools makes the Find a Microsoft Dynamics GP window feature
available (just press Ctrl-F). It will search all menu navigation options for
the specified text.

The Find a Window feature is also available from the Standard Toolbar.

C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

104 G P P O W E R T O O L S

Raise All Windows
GP Power Tools adds the Raise All Windows menu option available from
the application level menu and the Tools menu on all windows.

Exit After Processes
GP Power Tools adds the Exit After Processes menu option available from
the application level menu.

Transaction being Edited
GP Power Tools adds the User Name to the “Transaction is being edited
by another user” dialog. For Sales Order Processing: Sales Transaction
Entry window and Purchase Order Processing: Purchase Requisition Entry
window, Purchase Order Entry window, Purchasing Invoice Entry
window and Receivings Transaction Entry window.

Reload of User Dex.ini Settings
GP Power Tools reloads the User Dex.ini Settings after returning from
Modifier or Report Writer because core Dynamics GP does not.

Maintain Home Page Settings
GP Power Tools ensures that when the user’s Home Page role is changed,
the Home Page setting is maintained rather than defaulting back to
Intelligent Cloud Insights.

Mark User Inactive
GP Power Tools ensures The Date Inactivated field in the SY_Users_MSTR
(SY01400) table is updated when a user is marked as inactive.

Multilingual Support for Test and Historical companies
GP Power Tools resolves the issue when companies marked as Test or
Historical with their Company Name containing <TEST> or
<HISTORICAL> do not display the appropriate warning dialog on login
on a non-English system.

 C H A P T E R 3 S Y S T E M M O D U L E F E A T U R E S

 G P P O W E R T O O L S 105

Database Information for Test and Historical companies
GP Power Tools also adds the ability to see when a Test and/or Historical
company was last restored and the range of dates for transactions in the
General Ledger.

Clicking the More Info Button will display the Database Information.

106 G P P O W E R T O O L S

 Chapter 4: Administrator Tools Features

This chapter includes the following sections:

• Resource Information
• Security Profiler
• Security Information
• Security Log
• Security Analyzer
• Enhanced Security
• Deny Based Security - Security Denied
• Deny Based Security - Security Hidden
• Administrator Settings*
• Dex.ini Configuration*
• Dictionary Control*
• Company Login Filter*
• Window Position Memory*
• User Activity Log*
• Login Limits*
• Launch File Configuration*
• Dynamic Product Selection*
• Website Settings
• Product Version Validation
• Additional Administrator Features

* Advanced Mode Feature

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 107

Resource Information

You can open the Resource Information window by selecting Resource
Information from the Reports section of the GP Power Tools Area Page or
by selecting Resources and Security >> Resource Information from the
Options button drop list on the main window.

The Resource Information window can also be opened from the Tools menu or the
Resource Descriptions menu on any window. When opened from these menus, the
currently selected window field is automatically displayed in the window.

The Resource Information window will display technical, display, and
physical names and resource IDs for any form, window, field, table, table
group, report, script (procedure or function, global or form level) global
variable, constant, message or warning resource in the any dictionary
currently installed in the Microsoft Dynamics GP application.

It can also provide information about non-dictionary resource Security
Objects, such as Customization Tools, Document Access, Letters, Microsoft
Dynamics GP Import, Navigation Lists, Series Posting Permissions, and
SmartList Objects. If the products are installed, the following objects are
also supported, SmartList Builder Permissions and Extender Resources.
Security objects from other 3rd party products will show as Unknown
Objects.

To use this window, enter the information you know into the appropriate
field and the rest of the fields will be populated with the details for that
resource.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

108 G P P O W E R T O O L S

For example, entering a window’s display name will identify the
window’s technical name and resource ID; or entering a table’s physical
name as it appears in SQL Server will identify the table’s dictionary,
technical and display names as well as the resource ID.

This window can be useful when working with table and column names in SQL
Server, because it will quickly convert the physical names used in SQL back to the
technical names used in Modifier, Report Writer and Dexterity.

For a field on a window on a form, if the form is open, the value of the field will be
displayed in the Field Information section.

Below is a description of the individual fields on the window:

OK Button
This button will close the Resource Information window.

Back Button
This button work backwards through the history of searched resources
since the window was opened.

Search Again Button
This button will search for the next resource to match the search
criteria. Searching again works for Technical, Display and Physical
Names for all resource types. The mode of the search can be controlled
by the Search Mode drop-down list and the Case Sensitive checkbox.

You can also select from the Search Results list on the right-hand side
of the window instead of using the Search Again button to scroll
through the list individually.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 109

Clear Button
This button will clear the current search in preparation for a new
search.

Open Button
This button will open the selected form or report resource.

Reports opened in this way will not have any options or restrictions applied
and might contain unpredictable results. If the report uses a temporary table,
this table will contain no data. Opening forms and reports from this window
is only for testing purposes.

Copy Button
This button will copy the selected resource to the clipboard so it can be
pasted into scripts. It also can populate the Trigger Setup window’s
resource tab with the currently displayed resource.

Resource Finder Button
This button will open the Resource Finder window.

Security Button
This button will open the Security Information window for the
selected resource. See sections below for more information. The
Security Button will only be available if the current user has security
access to the security windows under Tools >> Setup >> System.

Resource Type
This drop-down list controls whether Resource Information window is
searching for Forms, Windows & Fields; Tables & Fields; Reports;
Security Objects; Procedures & Functions; Messages & Warnings;
Global Variables; or Constants.

Search Mode
This drop-down list controls how text searches will be handled by the
Resource Information window. The options are Exact Match, Begins
with and Contains. The default setting is Exact Match.

Case Sensitive
This checkbox controls if the text searches on the Resource Information
window will be case sensitive or not. The default setting is to be case
sensitive.

Show currently selected Window and Field information
When this checkbox is selected for the Forms, Windows & Fields
Resource Type, the Resource Information window will automatically
display the details for the currently selected Form, Window and Field.

The Show currently selected Window and Field information feature only
works for windows opened while the Resource Information or Resource
Finder windows are open. So open the Resource Information window before
opening the windows you want information about.

Associated Tables Button
This button is available when the Resource Information window is in
Forms, Windows & Fields mode. It will display a list of tables
associated with the currently selected form.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

110 G P P O W E R T O O L S

If a field is selected on the Resource Information window, you will
have the option to filter the list of tables to only tables having the
specified field. If the field is not available in any tables, this option
will be disabled.

This linked table for the window is highlighted with different icon and a flag
in the Linked column in the display.

Selecting a table from this window will change the Resource
Information window into Table & Field mode and display the details
of the selected table. If filtering on a field, the field will also be
selected.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 111

Display Keys Button
This button is available when the Resource Information window is in
Tables & Fields modes. It will display a list of keys (indexes) for the
currently selected table. The fields for the key and the key options are
displayed.

Selecting a field from this window will display the details of the
selected field.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

112 G P P O W E R T O O L S

Display Usage Button
This button is available when the Resource Information window is in
Tables & Fields modes. It will display a list of windows and reports
which use the currently selected table.

Selecting a window or report from this window will display the
details of the selected resource.

Redisplay Field Button
This button can be used to refresh the Field Value information
displayed if the field value has changed.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 113

Tables Containing Field Button
This button is available when the Resource Information window is in
Forms, Windows & Fields and Tables & Fields modes. It will display a
list of tables which contain the currently selected field. You have the
option to select to only include tables which contain data.

Selecting a table from this window will change the Resource
Information window into Table & Field mode and display the details
of the selected table and field.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

114 G P P O W E R T O O L S

Display Parameters Button
This button is available when the Resource Information window is in
Procedures & Functions mode. It will attempt to display a list of
parameters for the currently selected procedure or function.

This functionality used Visual Studio Tools to read the Dexterity parameters
from the Dictionary Assembly DLL files created for each dictionary. Not all
procedures and functions are exposed to Visual Studio Tools, so scripts with
anonymous or complex datatype parameters might not be found. If the
Dictionary Assembly for a product dictionary is not available, click on the
DAG Control Button to open the Dictionary Assembly Generator Control
window which can be used to generate it.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 115

Next to the Control Type field is the Static Values expansion button
which displays the Static Values associated with the data type.

The following is a description of the Options menu available for the
window:

Table Descriptions
Use this menu option to open the default Table Descriptions window.
This also allows this window to be opened on the Web Client.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

116 G P P O W E R T O O L S

Field Descriptions
Use this menu option to open the default Field Descriptions window.
This also allows this window to be opened on the Web Client.

Window Descriptions
Use this menu option to open the default Window Descriptions
window. This also allows this window to be opened on the Web
Client.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 117

Debug Expressions
Use this menu option to open the Script Debugger Expressions
window. When the Expressions window is open, the GP Power Tools
Script Debugging Context window will open to allow changing of
Dictionary context.

Debug Watch
Use this menu option to open the Script Debugger Watch window.
When the Watch window is open, the GP Power Tools Script
Debugging Context window will open to allow changing of Dictionary
context.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

118 G P P O W E R T O O L S

Debug Table Buffers
Use this menu option to open the Script Debugger Table Buffers
window.

When in Form, Window & Field mode, you can use the lookup button to
select a form, window or field resource. Once clicked the Form Explorer
window will open.

The Form Explorer can show modified and alternate resources. Modified resources
are shown with a blue pencil. Alternate resources are shown with a red pencil.
When fields on a modified or alternate window are displayed, only fields not on
the original window will be highlighted.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 119

To insert a form name or window name, select the resource in the right-hand pane
and click OK. If no resources are selected on the right-hand pane, the currently
selected resource in the left-hand pane will be used when OK is clicked. Clicking
on the resource name in the status field at the bottom of the window toggles
Dexterity and .Net view.

You can also use the menu lookup button to select a form, window or
field resource based on the menu navigation model. Once clicked the
Menu Explorer window will open.

The Menu Explorer can show modified and alternate resources. Modified
resources are shown with a blue pencil. Alternate resources are shown with a red
pencil. When fields on a modified or alternate window are display, only fields not
on the original window will be highlighted.

The Menu Explorer window has the option to navigate via application
menus (top of left pane) or by the Area Pages (bottom of left pane).

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

120 G P P O W E R T O O L S

To insert a form name or window name, select the resource in the right-hand pane
and click OK. If no resources are selected on the right-hand pane, the currently
selected resource in the left-hand pane will be used when OK is clicked.

When in Table & Field mode, you can use the lookup button to select a
table or field resource. Once clicked the Table Explorer window will open.

To insert a table name, select the resource in the right-hand pane and click OK. If
no resources are selected on the right-hand pane, the currently selected resource in
the left-hand pane will be used when OK is clicked. Clicking on the resource name
in the status field at the bottom of the window toggles Dexterity and .Net view.

The Table Explorer window highlights the primary key fields, but can also
display other key (index) information for a table. Expand the table node in
the tree to display the keys; selecting an individual key will display the
key fields and the key options.

The Table Explorer window has the option to navigate to tables with or
without table groups. Use the Table Groups checkbox to change views.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 121

When in Form or Table modes and the Field information can be entered,
you can use the lookup button next to the Field Technical Name to select a
field resource. Once clicked the Field Explorer window will open.

To insert a field name, select the resource in the right-hand pane and click OK.

When in Report mode, you can use the lookup button to select a report
resource. Once clicked the Report Explorer window will open.

To insert a report name, select the resource in the right-hand pane and click OK.
Custom Reports are shown with a different icon in the right-hand pane.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

122 G P P O W E R T O O L S

When in Security Object mode, you can use the lookup button to select a
security object. Once clicked the Security Object Explorer window will
open.

To insert a security object, select the desired security object in the right-hand pane
and click OK. Security objects from other 3rd party products will show as
Unknown Objects.

When in Procedure & Function mode, you can use the lookup button to
select a script resource. Once clicked the Script Explorer window will
open.

To insert a script name, select the resource in the right-hand pane and click OK.
Procedures and Functions are shown with different icons in the right-hand pane.
Clicking on the script name in the status field at the bottom of the window toggles
Dexterity and .Net view.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 123

You can select to only show Service Enabled Procedures, which shows a
simplified tree structure in the left-hand pane.

When in Global Variables mode, you can use the lookup button to select a
global variable resource. Once clicked the Global Variable Explorer
window will open.

To insert a global variable name, select the resource in the right-hand pane and
click OK.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

124 G P P O W E R T O O L S

When in Constants mode, you can use the lookup button to select a
constant resource. Once clicked the Constant Explorer window will open.

To insert a constant or form constant name, select the resource in the right-hand
pane and click OK.

Below is a description of the individual fields on the Resource Explorer
windows:

OK Button
This button will return the selected resource and close the window.

Cancel Button
This button will close the window without making a selection.

Back Up Button
This button will change the current selection to its parent on the tree.

Export Button
This button will allow the resources displayed in the list view to be
exported to a file or directly to an email. The default email settings can
be set up in the Email Settings window.

Export Mode
Use this drop-down list to select the format for the exported file. The
file can be exported as Tab Delimited, Comma Delimited or as a
HTML Table.

Hidden Forms
Use this check box to show forms which are normally hidden from the
security system.

Missing Resources
Use this check box to show menu items which point to external or
missing resources.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 125

Expanded Fields
Use this check box to expand composite and array fields into the
component parts.

Only show Service Enabled Procedures
Use this check box to limit the Script Explorer to only show Service
Enabled Procedures.

Options Menu >> Redisplay
Use this menu option to redisplay the contents of the window.

Options Menu >> Find
Use this menu option to open a dialog to select the text to search for.

Options Menu >> Find Next
Use this menu option to search for the previously entered text.

Options Menu >> All Columns
Use this menu option apply the search to all columns in the right-hand
pane.

Options Menu >> Sort Column
Use this menu option apply the search to only the current sort column
in the right-hand pane.

Options Menu >> Contains
Use this menu option select a contains search.

Options Menu >> Begins With
Use this menu option select a begins with search.

The Resource Explorer windows which have two panes are Splitter enabled which
allows the ratio between the left and right-hand panes to be adjusted. When
running on the Web Client, the splitter functionality is disabled.

To improve overall performance, the Resource Explorer windows use SQL based
cache tables. The tables are populated when the window is first opened and are
automatically updated whenever a product dictionary is added or updated. To
manually reset the cache tables and to re-read the product dictionaries, select
Options >> Refresh Dictionary Resources from the window menu.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

126 G P P O W E R T O O L S

On the Resource Information window, you can click the Open Button or
the Technical Name hyperlink to open the current resource. If the resource
is a form or report, it will open. If the resource is a table, the standard
Table Descriptions window will open.

If you click Window Technical Name hyperlink, the standard Window
Descriptions window will open.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 127

If you click Field Technical Name hyperlink, the standard Field
Information window will open.

The Resource Information window is Right click enabled. If you right mouse click
on any of the fields you can select Open Resource (same as Open Button),
Security Info (same as Security Button) or Cancel from the context sensitive
menu. The Security Info option will only be available if the current user has
security access to the security windows under Tools >> Setup >> System.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

128 G P P O W E R T O O L S

Resource Finder

You can open the Resource Finder window by selecting Resource Finder
from the Reports section of the GP Power Tools Area Page or by selecting
Resources and Security >> Resource Finder from the Options button drop
list on the main window.

The Resource Finder window can also be opened from the Tools menu or the
Resource Descriptions menu on any window. When opened from these menus, the
currently selected window field is automatically displayed in the window.

The Resource Finder window is designed to help identify exactly where
data from a window field is stored in the application’s tables. It combines
and extends the functionality of the Resource Information window.

The window has three modes:

• Find by Window Field: It can find the table fields based on a window
field by looking at the form’s associated tables and filtering out empty
tables, and including those tables that contain the field and also for
those tables containing the field’s value.

• Find by Table Field: It can locate all tables which contain the field and
filter to exclude empty tables.

• Find by Field Data: It can scan an entire database for the specified field
value and return the table and column of everywhere it is found. To
improve performance of this search you can filter for tables starting
with a prefix and/or for a specific Field (Column) Name.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 129

The Product, Form, Window and Field names can be manually entered,
selected using the Form Explorer or Menu Explorer windows. The Field
Name can also be

Below is a description of the individual fields on the window:

Filter Mode
Use this field to select the desired filter mode as described above. Find
by Window Field is the default mode.

OK Button
This button will close the Resource Finder window.

Clear Button
This button will clear the current search in preparation for a new
search.

Open Button
This button will open the selected form resource.

Resource Info Button
This button will open the Resource Information window.

Preview Data Button
This button will open the SQL Execute Setup window to preview the
data for the selected fields in the SQL table. The Preview with Field
Names option controls if the Dexterity Technical Names or SQL
Physical Names are used as the column headers.

Previewing data uses the SQL Execute Setup window to display the data and
so needs the Developer Tools module registered.

Redisplay Button
This button will repeat the search and redisplay the results.

Show currently selected Window and Field information
When this checkbox is selected for the Forms, Windows & Fields
Resource Type, the Resource Finder window will automatically
display the details for the currently selected Form, Window and Field.

The Show currently selected Window and Field information feature only
works for windows opened while the Resource Finder or Resource
Information windows are open. So, best practice is to open the Resource
Finder window before opening the windows you want information about.

Preview with Field Names
This checkbox controls if the Dexterity Technical Names or SQL
Physical Names are used as the column headers when previewing
data.

Auto Search
This checkbox is used for Find by Field Data mode to control whether
to automatically search when individual settings are changed. When
Auto Search is not selected, use the Redisplay Button to manually start
the search.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

130 G P P O W E R T O O L S

Filter Empty Tables
This checkbox controls if empty tables should be excluded from the
search results.

Filter for Field
This checkbox controls if the search results should be filtered to only
include tables that contain the selected field.

Filter for Value
This checkbox controls if the search results should be filtered to only
include tables that contain the specified data in the selected field.

Filter for Field (Field List)
This checkbox will only show the selected field in the Field List.

Show Expanded Fields
Use this check box to expand composite and array fields into the
component parts.

Case Mode
This drop-down list is used for Find by Field Data mode to control
whether the search should be Case Insensitive, Case Sensitive or use
the Default Sensitivity for the SQL Server.

Search Mode
This drop-down list is used for Find by Field Data mode to control
whether to use an Exact Match, Begins With or Contains search.

Mark All
Use this button to mark all the fields (or all highlighted fields) in the
Field List.

Unmark All
Use this button to unmark all the fields (or all highlighted fields) in the
Field List.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 131

The following is a description of the Options menu available for the
window:

Table Descriptions
Use this menu option to open the default Table Descriptions window.
This also allows this window to be opened on the Web Client.

Field Descriptions
Use this menu option to open the default Field Descriptions window.
This also allows this window to be opened on the Web Client.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

132 G P P O W E R T O O L S

Window Descriptions
Use this menu option to open the default Window Descriptions
window. This also allows this window to be opened on the Web
Client.

Debug Expressions
Use this menu option to open the Script Debugger Expressions
window. When the Expressions window is open, the GP Power Tools
Script Debugging Context window will open to allow changing of
Dictionary context.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 133

Debug Watch
Use this menu option to open the Script Debugger Watch window.
When the Watch window is open, the GP Power Tools Script
Debugging Context window will open to allow changing of Dictionary
context.

Debug Table Buffers
Use this menu option to open the Script Debugger Table Buffers
window.

Using the Find by Field Data mode without any Field or Table filters will scan all
fields and tables in a database for the data being searched for. This query can take
a long time to run and place a performance load on the SQL Server which could
affect other users or processes. To minimize the impact on the system this mode
can only be used by Administrator users.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

134 G P P O W E R T O O L S

Security Profiler

You can open the Security Profiler window by selecting Security Profiler
from the Reports section of the GP Power Tools Area Page or by selecting
Resources and Security >> Security Profiler from the Options button drop
list on the main window.

After it has been opened, the Security Profiler window will monitor all
application-level security requests and display the results.

Whenever a form or report is opened, the application-level security is
checked to confirm that the current user has access. Security is also
checked to find out whether a customized version (modified, alternate or
modified alternate) of the form or report is to be used.

When a report is opened, access is checked for all of the tables linked to
the report. To be able to print the report, access must be permitted for the
report itself and all the tables linked to the report.

The Security Profiler will also track access to non-dictionary resource
Security Objects, such as Customization Tools, Document Access, Letters,
Microsoft Dynamics GP Import, Navigation Lists, Series Posting
Permissions, and SmartList Objects. If the products are installed, the
following objects are also supported, SmartList Builder Permissions and
Extender Resources. Security objects from other 3rd party products will
show as Unknown Objects.

The Security Profiler window displays each of the queries to the
application-level security system and displays the results with all the
relevant details of the resources involved.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 135

The Security Profiler window can be used to identify which form or report
is causing unexpected security privileges or access denied errors. Just open
the Security Profiler and then perform the action in Microsoft Dynamics
GP that causes the error to appear. The details of the resource causing the
error will be displayed.

By default, GP Power Tools will append additional details to the dialog to
identify the resource. This functionality can be disabled from the
Administrator Settings window, if desired.

The Security Profiler window only monitors application-level security. It will not
display security issues caused by Windows security or SQL Server security.

Below is a description of the individual fields on the window:

OK Button
This button will close the Security Profiler window.

Export Button
This button will allow a Security Profiler log to be exported to a file or
directly to an email. The default email settings can be set up in the
Email Settings window. This allows a user to provide all of the details
of a security issue to the administrator for their analysis.

Import Button
This button can be used to import a previously exported Security
Profiler log. This allows an administrator to view a log of security
issues provided by a user.

Clear Button
This button can be used to clear the current contents of the Security
Profiler window.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

136 G P P O W E R T O O L S

Open Button
This button will open the selected form or report resource.

Reports opened in this way will not have any options or restrictions applied
and might contain unpredictable results. If the report uses a temporary table,
this table will contain no data. Opening forms and reports from this window
is only for testing purposes.

Security Button Drop List
This button Drop List has the option to open the Security Information
window for the selected resource. See sections below for more
information. The Security Button will only be available if the current
user has security access to the Security Information window.

If the current user has access to the Security Task Setup window, the
option to Start Capture of Resources and Security Objects will be
available. This option will offer to clear the Security Profiler if it is not
empty:

If the current user has started the capture of Resources and Security
Objects, the option to Stop Capture and create/update Security Task
will be available. When this option is selected it will open the
Create/Update Security Task window.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 137

This window can be used to create a new Security Task or update an
existing Security Task with the items listed in the Security Profiler. If
the user has access to the Security Role Setup window, the option to
create a new Security Role or update an existing Security Role with the
Security Task ID will be available.

Use the options to capture Resources and Security Objects and then create or
update a Security Task based on the captured items to quickly build Security
Tasks for specific activities within Microsoft Dynamics GP.

Print Button
This button will allow a report of the contents of the Security Profiler
window to be printed.

Mark All Button
This button will select all the resources (or highlighted resources) on
the window.

Unmark All Button
This button will unselect all the resources (or highlighted resources)
on the window.

The Security Profiler window is Right click enabled. If you right mouse click on
an item in the list you can select Resource Info (same as double click), Open
Resource (same as Open Button), Security Info (same as Security Button) or
Cancel from the context sensitive menu. The Security Info option will only be
available if the current user has security access to the security windows under
Tools >> Setup >> System.

The Security Profiler window can be configured to open automatically when there
is a security issue. This option is controlled from the Administrator Settings
window.

The Security Profiler window has an Options Menu which can be used to Refresh
Application Navigation. This option can be used by a user to update the
application’s navigation menus to reflect changes made to security without
having to exit and re-launch the application.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

138 G P P O W E R T O O L S

Security Information

You can open the Security Information window by selecting Security
Information from the Reports section of the GP Power Tools Area Page or
by selecting Resources and Security >> Security Information from the
Options button drop list on the main window. Once opened, you can use
the drop-down menu on top of the left pane to select a resource. You may
select a Form (by Dictionary or by Menu) as well as a Table or Report
resource, a Security Object, or a Service Enabled Procedure.

You can also open the Security Information window from the Resource
Information window or the Security Profiler window. From these
windows use the Security Button or the Security Info option from the local
context (right click) menu to show security information for the selected
resource.

The Security Information window is designed to display the security
settings for the selected resource for a particular user and company
combination. Once the information is displayed the administrator can use
the Go To Button or double click to open the appropriate security
administration window to make changes if necessary.

Below is an example of the Security Information window. It shows the
security settings for the user including the security tasks that belong to
security roles assigned to that user. Also shown is the alternate/modified
form and report ID to show which version of a resource the user has
access to. Under the System Level node, all security tasks, security roles
and alternate/modified form and report IDs which reference the selected
resource are displayed.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 139

The tree in the left-hand pane is used to display the security status for the
currently selected user and company for the selected security resource.
The first 3 nodes of the tree describe the product dictionary, resource type
(and series) and resource by Display and Technical Name.

If a resource is not available on the Web Client or not available to Limited Users,
this will be displayed on an information node on the tree. Also a Limited User will
be highlighted with a yellow dot on the icon and Limited User in the description.

The next section is the User node which shows if the user has access to the
current resource and which Security Tasks and Security Roles provided
that access. If the resource is a Form or Report, the Alternate Modified
Form and Report ID will be shown to define which version of the
resources access is granted to.

The third section is the System node which shows all Security Tasks and
Security Roles which reference the current resource and all Alternate
Modified Forms and Report IDs that reference the current resource.
Security Tasks, Security Roles and Alternate Modified Forms and Reports
IDs in this view will have a green or red indicator to show whether the
current user and company has access.

Expand the System Level node on the left-hand pane to see what tasks are assigned
to the currently selected resource or operation. Expand the tasks to see what roles
can be used to give a user access to the currently selected resource or operation. If
the only task and role available is POWERUSER, then the current resource or
operation has not been added to any tasks.

Below is a description of the individual fields on the window:

User ID
This is the User ID for which security is being checked.

Company
This is the company for which security is being checked.

Show only Selected
When this checkbox is selected, only users with access will be shown.

Inactive
When this checkbox is selected, inactive users will be shown.

OK Button
This button will close the Security Information window.

Redisplay Button
This button will re-populate the security information tree. Use this
button after making security changes to see the new updated security.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

140 G P P O W E R T O O L S

Legend Button
This button will open the Security Information Legend window to
show the meanings of the different icons used.

Show Resources Button
This button will open the Security Information Resources window.

Resource Info Button
This button will open the Resource Information window.

Security Button
Use this button to access Deny Based Security and select from the
Enhanced Security window, the Security Denied window and the
Security Hidden window.

Go To Button
This button allows the user to open a system security window.

Print Button
Use this button to print a report of the user and company access for
the currently selected resource with details of which Security Roles
and Security Tasks granted access.

You can double click on the User ID/Company node to open the User Security
Setup window; a Security Task ID to open the Security Task Setup window; a
Security Role ID to open the Security Role Setup window; and an
Alternate/Modified Forms and Reports ID to open the Alternate/Modified Forms
and Reports window.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 141

The right-hand pane on the Security Information window displays several
different views into the company access and security information. Use the
View Access button drop-down list to change view. When changing
views, the currently selected object will remain selected if possible. This
pane can be used even when no resource is selected before opening the
Security Information window.

Below are the views available.

These views will provide a visual representation of the relationships
between Security Tasks, Security Roles, Alternate Modified Forms and
Report IDs, Users and Companies.

The Security Information window will highlight when security is not activated for
the selected company. This can be enabled from Company Setup window
(Microsoft Dynamics GP >> Tools >> Setup >> Company >> Company).

The Security Information window is Splitter enabled which allows the ratio
between the left and right-hand panes to be adjusted. When running on the Web
Client, the splitter functionality is disabled..

Security Information SQL Role Views
The Security Information window can also be used to show the SQL
Server Roles assigned to users at the SQL Server level as well as for each
database. There are three views available to view the data by Users, by
Database and by Role.

The SQL Role information is read from the SQL Server the first time one of the
three SQL Role views is selected. On a large system, there might be a small delay
while the data is read from the SQL Server. To force the data to be read again,
close and re-open the Security Information window.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

142 G P P O W E R T O O L S

Below is an example screenshot.

The data shown in the three views is restricted to only include Dynamics
GP users and databases by default. To show all users and database, select
the Show All SQL Users & Databases checkbox.

Once the option has been selected, the view will be refreshed to include
the additional data for non-Dynamics GP users and databases.

Security Information Resources
When the Show Resources Button is clicked, the Security Information
Resources window will open.

This window will display the resources associated with the currently
selected User ID/Company combination, Security Role ID, Security Task
ID or Alternate/Modified Forms and Report ID in the right-hand pane of
the Security Information window. Changing the selection will cause the
window to refresh.

You can use the check boxes to decide which resource types (Forms,
Reports, Tables and Other) to include in the displayed resources. These
selections can be changed while the window is populating.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 143

The resources displayed are those for which the selected User
ID/Company combination, Security Role ID, Security Task ID or
Alternate/Modified Forms and Report ID has access to.

If the selected node in the right-hand pane of the Security Information
window has a User ID and/or Company ID parent node, the system will
be able to identify which Alternate/Modified Forms and Report ID to
apply and so will display when an alternate and/or modified version of
the resources has been selected.

Below is a description of the individual fields on the window:

OK Button
This button will close the Security Information Resources window.

Redisplay Button
This button will re-populate the window. Use this button after making
security changes to see the new updated security.

Legend Button
This button will open the Security Information Legend window.

Export Button
This button will allow the resources displayed in the list view to be
exported to a file or directly to an email. The default email settings can
be set up in the Email Settings window.

Export Mode
Use this drop-down list to select the format for the exported file. The
file can be exported as Tab Delimited, Comma Delimited or as a
HTML Table.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

144 G P P O W E R T O O L S

Show Series
Use this checkbox if you want the series information included in the
resource list.

Display Security Tasks and Roles
Use this checkbox if you want the Security Tasks and Security Roles
displayed in the resource list. When this option is selected, multiple
lines will be displayed for resources if there are more than one
Security Task or Security Role which provides access to the resource.

Print Button
A report of the contents of the resource list can be printed using this
button.

When opening the Security Information window, a background process is
launched to check if all the dictionary resources and security objects have been
added to the syCurrentResources (SY09400) table. If information is found to be
missing or dictionaries have been added or updated, GP Power Tools will generate
the additional data. GP Power Tools will also add the additional data when the
table is cleared using the Clear Data window.

Once all the dictionary resources and security objects have been added to the
syCurrentResources (SY09400) table, GP Power Tools will create a
SUPERUSER Security Task with access to everything and a matching
SUPERUSER Security Role. Using the SUPERUSER Security Role is similar to
the POWERUSER Security Role but uses the security model rather than
bypassing it. GP Power Tools will keep the SUPERUSER Security Task updated
automatically.

The Security Information window has an Options Menu which can be used to
Refresh Resource Information Table. This option can be used by a user to clear
and then update the syCurrentResources (SY09400) table without having to use
the Clear Data window. The SUPERUSER Security Task and SUPERUSER
Security Role will also be updated using this option.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 145

The following section covers additional functionality available in the
Menu Explorer window.

When the Menu Explorer opened from the Security Information window,
you have the option to filter the menus for the current user and company
based on their security access.

The Menu Explorer also has the option to display the details for the menu
command, by click the expansion button (shown above). This will open
the Menu Command Details expansion area at the bottom of the window.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

146 G P P O W E R T O O L S

Security Log

You can open the Security Log window by selecting Security Log from the
Reports section of the GP Power Tools Area Page or by selecting
Resources and Security >> Security Log from the Options button drop list
on the main window.

The Security Log window displays the data captured by the Security
Activity Tracking option which can be enabled from the Administrator
Settings window using the Enable Security Activity Tracking option.

Once the Security Activity Tracking is enabled, all security events (both
granted and denied) are tracked. The logging does not track individual
events, but instead totals up the number of events so you can see which
resources are accessed the most. It also tracks the last three security events
for a resource.

Each event is tracked for the user and company, user, company and
system wide, and you select how you want to view the data.

You can use the check boxes to decide which resource types (Forms,
Reports, Tables and Other) to include in the displayed resources. These
selections can be changed while the window is populating.

Below is a description of the individual fields on the window:

Display Mode
This drop-down list allows you to select whether your wish to view
data for the selected user and company, for a specific user or company
or for all users and companies.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 147

User ID
Use this field to select the User ID to display.

Company
Use this field to select the Company to display.

Sort Mode
This drop-down list can be used to select the order that the Security
Log entries are initially displayed in. You can also adjust the sort after
the data is displayed by clicking on the column headers.

Excluded from Security
This checkbox can be selected if you wish to see the resources which
have been accessed which are excluded from the application security
system.

OK Button
This button will close the Security Log window.

Redisplay Button
This button can be used to redisplay the current contents of the
Security Log data to the window.

Open Button
This button will open the selected form or report resource.

Reports opened in this way will not have any options or restrictions applied
and might contain unpredictable results. If the report uses a temporary table,
this table will contain no data. Opening forms and reports from this window
is only for testing purposes.

Security Button Drop List
This button Drop List has the option to open the Security Information
window for the selected resource. See sections below for more
information. The Security Button will only be available if the current
user has security access to the Security Information window.

The option to Create/update Security Task from selected rows will
open the Create/Update Security Task from Log window.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

148 G P P O W E R T O O L S

This window can be used to create a new Security Task or update an
existing Security Task with the selected rows listed in the Security Log
window. If the user has access to the Security Role Setup window, the
option to create a new Security Role or update an existing Security
Role with the Security Task ID will be available.

Use the options to capture Resources and Security Objects and then create or
update a Security Task based on the captured items to quickly build Security
Tasks for specific activities within Microsoft Dynamics GP.

Export Button
This button will allow the result set displayed in the list view to be
exported to a file or directly to an email. The default email settings can
be set up in the Email Settings window.

Export Mode
Use this drop-down list to select the format for the exported file. The
file can be exported as Tab Delimited, Comma Delimited or as a
HTML Table.

Details Button
This button will open the Security Log Detail window to display
individual records of each security event. Turn the capture of this
detailed data on from the Administrator Settings window.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 149

Resource Detail Button
This button will open the Security Log Resource Details window to
display other log entries for the currently selected resource. This
allows you to easily check which other users and/or companies are
using a resource.

Mark All Button
This button will mark all lines (or all highlighted lines) in the current
Security Log view as selected.

Unmark All Button
This button will mark all lines (or all highlighted lines) in the current
Security Log view as unselected.

The Security Log window is Right click enabled. If you right mouse click on an
item in the list you can select Resource Info (same as double click), Open Resource
(same as Open Button), Security Info (same as Security Button) or Cancel from
the context sensitive menu. The Security Info option will only be available if the
current user has security access to the security windows under Tools >> Setup
>> System.

To clear the data in the Security Log table to start capturing data again, use the
Configuration Maintenance window to clear the data in the MBS_SecurityLog
table.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

150 G P P O W E R T O O L S

Security Analyzer

The Security Analyzer is a tool for administrators to analyze the security
settings of their Microsoft Dynamics GP system. It is designed to highlight
potential security risks, provide information on unused settings as well as
provide a comparison between security access and security resources
actually used.

The Security Analyzer has over twenty queries which can be displayed in
both Summary and Detail formats. The queries are divided into System
Level queries and User & Companies queries. For the Users & Companies
queries, you can select the User and/or Company to limit the query data
to.

Some of the queries in the Security Analyzer window use the Security Log
window’s activity data captured by the Security Activity Tracking option
which can be enabled from the Administrator Settings window using the
Enable Security Activity Tracking option.

Once the data is displayed, it can be exported if desired, or used to drill
down to the relevant system windows to be able to make changes to the
system and security settings.

You can open the Security Analyzer window by selecting Security
Analyzer from the Reports section of the GP Power Tools Area Page or by
selecting Resources and Security >> Security Analyzer from the Options
button drop list on the main window.

Before the window opens the system will check if you have the
dictionaries for all products installed. If not, the following dialogs will be
displayed with the details of the missing products. This is to ensure that
the security data in the system will be valid for all installed products.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 151

When opening the Security Analyzer window, it will check if all the dictionary
resources and security objects have been added to the syCurrentResources
(SY09400) table. If information is found to be missing or dictionaries have been
added or updated, GP Power Tools will generate the additional data. GP Power
Tools will also add the additional data when the table is cleared using the Clear
Data window.

After confirming all the products are installed and the updating the
security resources table has completed, the Security Analyzer window will
open.

Below is a description of the individual fields on the window:

OK Button
This button will close the Security Analyzer window.

Redisplay Button
This button will re-populate the window. Use this button after making
changes to users and companies. To refresh the current query, use the
Refresh button in the top right corner of the right-hand pane.

Open Button
This button will open the selected form or report resource.

Security Button
This button will open the Security Information window for the
selected resource.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

152 G P P O W E R T O O L S

Export Button
This button will allow the resources displayed in the list view to be
exported to a file or directly to an email. The default email settings can
be set up in the Email Settings window.

Export Mode
Use this drop-down list to select the format for the exported file. The
file can be exported as Tab Delimited, Comma Delimited or as a
HTML Table.

Go To Button
This button allows the user to open a system security window.

Select the query you wish to view using the left-hand tree pane and it will
be displayed in the right-hand list pane. You can change the order that
Users and Companies are displayed in using the view button above the
left-hand pane. You can also swap between Summary and Detail view
using the view button above the right-hand pane. Double clicking on the
data in a Summary view in the right pane will jump to the Detail view of
the same query.

You can double click on the User ID/Company node to open the User Security
Setup window; a Security Task ID to open the Security Task Setup window; a
Security Role ID to open the Security Role Setup window; and an
Alternate/Modified Forms and Reports ID to open the Alternate/Modified Forms
and Reports window.

The Security Analyzer window is Right click enabled. If you right mouse click on
an item in the list you can select Resource Info (same as double click), Open
Resource (same as Open Button), Security Info (same as Security Button) or
Cancel from the context sensitive menu. The Security Info option will only be
available if the current user has security access to the security windows under
Tools >> Setup >> System.

The Security Analuyzer window is Splitter enabled which allows the ratio
between the left and right-hand panes to be adjusted. When running on the Web
Client, the splitter functionality is disabled..

The Security Analyzer window has an Options Menu which can be used to
Refresh Resource Information Table. This option can be used by a user to clear
and then update the syCurrentResources (SY09400) table without having to use
the Clear Data window.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 153

Deny Based Security – Introduction

The security system in Microsoft Dynamics GP controls access to all
resources within the application. This includes dictionary resources such
as Forms, Reports and Tables as well as other security objects such as
Document Access and Posting Permissions.

For Microsoft Dynamics GP prior to Version 10.0, the security model was
an optimistic user & company and class-based design. This design meant
that a user had access to every resource within the application unless it
was specifically denied. The settings for a user could be set at the user &
company level or set a class level and rolled down to users belonging to
that class.

From Microsoft Dynamics GP Version 10.0, the security model was
changed to a pessimistic task and role-based design. This design meant
that a user had no access to any resources unless they were specifically
granted to them. Granting access worked by grouping multiple resources
or operations needed to perform a function into tasks. Multiple tasks could
then be assigned to roles. Finally, a user could be assigned to multiple
roles depending on the work they do within each company.

The task and role-based model works really well to grant access to users
based on the work they do but does not easily allow for minor differences
between users.

For example: If you have two users with the same roles but wish to deny access to
a single window from one user, the process to remove access to one resource is
cumbersome and difficult to maintain. You would need to duplicate any task that
gave access to the window and remove that one window from the now duplicated
tasks, then you would need to duplicate any role that linked to any of the original
tasks now updated and change them to use the duplicated tasks. Finally, you
would need to assign the now duplicated roles to the user.

Based on the above example, you can see that over time, your security
data would be filled with duplicated tasks and roles without only minor
differences between them and no easy method to compare the differences.

There must be a better way.... Introducing Deny Based Security.

Deny Based Security adds an optional additional layer to the Microsoft
Dynamics GP security model, which allows individual resources or
operations to be denied on a per user & company basis regardless of what
has been granted by the task and role model. Once a resource is marked as
denied for a user & company combination, access will never be available
for that user & company.

Deny Based Security also adds the ability to hide items from the menu
navigation when those items cannot be controlled by security. This works
for both menu items linked to forms excluded from security and menu
items which run scripts rather than opening forms.

The Security Denied functionality, once applied, works whether GP Power Tools
is installed or not. The Security Hidden functionality does require the GP Power
Tools to remain installed (which is the recommended configuration anyway).

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

154 G P P O W E R T O O L S

Deny Based Security – Enhanced Security

You can open the Enhanced Security window by selecting Enhanced
Security from the Reports section of the GP Power Tools Area Page or by
selecting Resources and Security >> Enhanced Security from the Options
button drop list on the main window.

The Enhanced Security window allows you view the security resources or
operations via the navigation model (Menus or Area Pages) or via the
dictionary model. You can also view security resources contained in
specific Security Roles or Security Tasks.

The status icons on the left-hand pane show the security status for the user
& company selected in the right-hand pane. The status icons on the right-
hand pane show the security status for the resource or operation selected
in the left-hand pane.

Checkboxes are used for security resources or operations which can be controlled
by the Security Denied functionality. Radio Buttons are used for menu commands
which can be controlled by the Security Hidden functionality. A checkbox or radio
button will show as disabled if the resource is excluded from security or the user
belongs to the POWERUSER role.

Clicking on an enabled status icon will toggle the item as Security Denied
or Security Hidden accordingly. Changes are made immediately and do
not need the OK Button to be clicked.

Right clicking on the left-hand or right-hand panes while items are selected in the
trees will open a context menu with the options to roll down changes to multiple
users and/or companies.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 155

Below is a description of the individual fields on the window:

OK Button
This button will close the Enhanced Security window.

Redisplay Button
This button will re-populate the left-hand pane of the window. To
refresh the Users and Companies, use the Refresh button in the top
right corner of the right-hand pane.

Legend Button
This button will open the Enhanced Security Legend window to show
the meanings of the different icons used.

Copy Button
Use this button to copy security settings from the current to user &
company to other users in the current company:

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

156 G P P O W E R T O O L S

Or copy security settings from the current to user & company the
current user in other companies:

Use these windows to copy Security Denied and Security Hidden data to
other users and companies in the system. For your convenience, these
windows can also copy Security Roles and Alternate Modified Forms and
Report IDs as well as Field Level Security settings. You have the option to
make an exact copy (Reset target before copying) or combine the settings
(Add settings to target).

Resource Info Button
This button will open the Resource Information window.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 157

Security Button
Use this button to access the Security Information window or the other
Deny Based Security windows and select from the Security Denied
window and the Security Hidden window.

The following is a description of the fields on the window:

User ID
This is the User ID for which security is being displayed.

Company
This is the company for which security is being displayed.

Display Excluded and Missing Resources
Selecting this checkbox will show all resources in the left-hand pane,
even if the resource is excluded from security or is missing.

Show Table Groups
Unselecting this checkbox will show the table resources under
Dictionary Tables without using the table group logical tables.

Display only Selected Users
Selecting this checkbox will only show users in the right-hand pane if
they have access to the resource selected in the left-hand pane.

The Enhanced Security window has an Options Menu which can be used to
Refresh Application Navigation. This option can be used to update the
application’s navigation menus to reflect changes made to security without
having to exit and re-launch the application.

The Menus navigation view uses the data in the Menu Master syMenuMstr
(SY07110) table to create the view. Some products do not correctly add their
menu items to the table and so their menus will not show on the view.

The Options Menu on Enhanced Security window can be used to Scan for
missing Menu Entries. This option will open the following window can scan the
menu navigation in memory and look for entries which exist in memory but not in
the table.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

158 G P P O W E R T O O L S

You can then select the entries you would like to add to the table and these will
show on the Enhanced Security Menus view next time it is used.

When opening the Enhanced Security window, it will check if all the dictionary
resources and security objects have been added to the syCurrentResources
(SY09400) table. If information is found to be missing or dictionaries have been
added or updated, GP Power Tools will generate the additional data. GP Power
Tools will also add the additional data when the table is cleared using the Clear
Data window.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 159

Deny Based Security – Security Denied

You can open the Security Denied window by selecting Security Denied
from the Reports section of the GP Power Tools Area Page or by selecting
Resources and Security >> Security Denied from the Options button drop
list on the main window.

The Security Denied window is used for maintenance, exporting and
reporting of the Deny Based Security – Security Denied data. Using this
window allows all the Security Denied for users to be easily viewed
without having to explore the tree views on the Enhanced Security
window.

Changes in the window are made immediately and do not need the OK
Button to be clicked.

Below is a description of the individual fields on the window:

OK Button
This button will close the Security Denied window.

Redisplay Button
This button will re-populate the window.

Delete Button
This button will permanently remove the Security Denied records
with a marked checkbox.

Open Button
Use this button to open the Window or Report currently selected.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

160 G P P O W E R T O O L S

Security Button
Use this button to access the Security Information window or the
Enhanced Security window.

Export Button
This button will allow the resources displayed in the list view to be
exported to a file or directly to an email. The default email settings can
be set up in the Email Settings window.

Export Mode
Use this drop-down list to select the format for the exported file. The
file can be exported as Tab Delimited, Comma Delimited or as a
HTML Table.

Print Button
This button will allow a report of the contents of the Security Denied
window to be printed.

The following is a description of the fields on the window:

Display Mode
Use this drop-down list in conjunction with the User ID and Company
ID fields to control which records are displayed in the Security Denied
view.

User ID
This is the User ID for which security is being displayed.

Company
This is the company for which security is being displayed.

Sort Mode
Use this drop-down list to control the order that the records are
displayed in the Security Denied view.

Include
Use these resource type checkboxes to filter the records are displayed
in the Security Denied view.

Mark All Button
This button will mark all lines (or all highlighted lines) in the current
Security Denied view as selected.

Unmark All Button
This button will mark all lines (or all highlighted lines) in the current
Security Denied view as unselected.

The Security Denied window has an Options Menu which can be used to Refresh
Application Navigation. This option can be used to update the application’s
navigation menus to reflect changes made to security without having to exit and
re-launch the application.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 161

Deny Based Security – Security Hidden

You can open the Security Hidden window by selecting Security Hidden
from the Reports section of the GP Power Tools Area Page or by selecting
Resources and Security >> Security Hidden from the Options button drop
list on the main window.

The Security Hidden window is used for maintenance, exporting and
reporting of the Deny Based Security – Security Hidden data. Using this
window allows all the Security Hidden for users to be easily viewed
without having to explore the Menus tree view on the Enhanced Security
window.

Changes in the window are made immediately and do not need the OK
Button to be clicked.

Below is a description of the individual fields on the window:

OK Button
This button will close the Security Hidden window.

Redisplay Button
This button will re-populate the window.

Delete Button
This button will permanently remove the Security Hidden records
with a marked checkbox.

Open Button
Use this button to open the command currently selected.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

162 G P P O W E R T O O L S

Security Button
Use this button to access the Enhanced Security window.

Export Button
This button will allow the resources displayed in the list view to be
exported to a file or directly to an email. The default email settings can
be set up in the Email Settings window.

Export Mode
Use this drop-down list to select the format for the exported file. The
file can be exported as Tab Delimited, Comma Delimited or as a
HTML Table.

Print Button
This button will allow a report of the contents of the Security Hidden
window to be printed.

The following is a description of the fields on the window:

Display Mode
Use this drop-down list in conjunction with the User ID and Company
ID fields to control which records are displayed in the Security Hidden
view.

User ID
This is the User ID for which security is being displayed.

Company
This is the company for which security is being displayed.

Sort Mode
Use this drop-down list to control the order that the records are
displayed in the Security Hidden view.

Mark All Button
This button will mark all lines (or all highlighted lines) in the current
Security Hidden view as selected.

Unmark All Button
This button will mark all lines (or all highlighted lines) in the current
Security Hidden view as unselected.

The Security Hidden window has an Options Menu which can be used to Refresh
Application Navigation. This option can be used to update the application’s
navigation menus to reflect changes made to security without having to exit and
re-launch the application.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 163

Administrator Settings

You can open the Administrator Settings window by a selecting
Administrator Settings tab from the Setup section of the GP Power Tools
Area Page or by selecting Administration >> Administrator Settings from
the Options button drop list on the main window. This is an Advanced
Mode feature.

The Administrator Settings window can change settings used within GP
Power Tools. It is divided into three tabbed sections.

Colors Tab
The Colors tab contains settings for controlling the Company Color
Scheme settings. These color themes are designed to prevent the accidental
entry of data into an incorrect company. It supports different colors for
each company and, if Binary Stream’s Multi-Entity Management is
installed, for each entity. There is also the option to have per user override
settings for vision impaired and color-blind users.

The following is a description of the individual fields on the window:

Activate Company based Color Schemes
This option can be used to change the background colors for each
company to allow an effective visual cue as to the company currently
being used.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

164 G P P O W E R T O O L S

Once the option is activated, the colors for the Window Toolbar Color,
Window Background Color, Window Heading Color, Field
Background Color and Scrolling Window Line Color can be selected
using the Select Theme button drop-down list which offers 110 preset
themes. Any Custom Color Themes loaded or created will also be
shown in the Select Theme button drop-down list. If a preset or
custom theme is selected, the Theme Group and Theme Name will be
displayed.

The colors can also be manually selected with the Select Buttons. The
Reset Buttons can be used to restore the default colors. You can also
use the checkboxes against each color to select which colors will be
affected by the Spinner Controls. These up and down buttons can be
used to adjust the individual Red, Green and Blue components of the
selected colors or to adjust all three values together to lighten or
darken the selected colors.

The current color scheme and the new color scheme are displayed.
When the Apply Button or OK Button is clicked, the new color scheme
will be applied.

The Color Scheme data is stored at both the Company and System
level. This design allows for live company databases to be copied into
a test company database while maintaining the correct color schemes.

When running on the Web Client, the Activate Company based Color
Schemes option is disabled as it is not supported.

Company Colors Lookup
This lookup button can be used to change the company for which the
Color Scheme is being edited. When the button is clicked, the
Company Colors Lookup window is opened.

The colors for a company are displayed on the window when the
company is highlighted. This allows you to see the colors for each
company without having to switch companies and open the
Administrator Settings window in each company.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 165

Changing the Color Schemes for other companies updates the settings in the
system database only. This system setting is then transferred into the
company database the next time the company is used.

Entity ID Lookup
When Binary Stream’s Multi-Entity Management is installed, this
lookup button can be used to change the entity for which the Color
Scheme is being edited. When the button is clicked, the Entity ID
Lookup window is opened to show the entities available in the current
company.

The colors for an entity are displayed on the window when the entity
is highlighted. This allows you to see the colors for each entity without
having to change default entity.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

166 G P P O W E R T O O L S

The color scheme used for entities is only for the default or current entity as
configured using the User Entity Login window. If allowing the entity to be
changed on a per transaction basis, the color scheme will still be based on the
default entity and not the transaction level entity.

Company Colors Users
This button can be used to optionally control for which users the
company-based Color Schemes are enabled. When the button is
clicked, the Company Colors User window is opened.

When the Allow selection of users for Company based Schemes
checkbox is selected, you will able to use the User Selection checkbox
and the Mark All and Unmark All buttons to control for which users
the Company based Color Schemes are enabled. By default, all users
(including new users) are enabled.

For each user, the number of companies they have access to is shown, this
information can be used when deciding if a user should have the Company
based Color Schemes enabled.

Changes made to the User Selection checkbox are saved immediately and so
will still take effect even if the Administrator Settings window is closed
without saving.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 167

Allow per user selection of colors
Use this checkbox to enable and disable Per User Color Selection. This
feature is designed to be used for vision impaired or color-blind users
to override standard company color scheme. When enabling the
following dialog is displayed.

When using per user selection of colors, using the colors to identify the
current company might not work. Keeping the main background color the
same as the standard company colors would help avoid this issue.

When disabling the feature, the following dialog is displayed to explain
that any stored per user settings will be removed.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

168 G P P O W E R T O O L S

User Colors Button
Click this button to access the Per User Color Selection window.

From this window select a user with the lookup to add the user to the
tree, then select the user for an “all companies” override, or select
individual companies (or entities) to define colors for that company
(or entity).

A High Contrast black and white theme is available from the Accessibility
theme group if desired. It makes all the background white so that the text and
other window objects stand out.

Custom Color Themes
Selecting Custom Color Themes from the Select Theme button drop-
down list will open the Custom Color Theme Setup window.

This window can be used to maintain Custom Color Themes. You can
create new themes based on the colors Administrator Settings window
or create new themes.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 169

The Theme Group and Theme Name fields are required and dictate
how the themes are displayed. Themes with the same Theme Group
will be grouped together.

Theme colors can be edited with same controls as the Administrator
Setting window and can be saved and deleted. Exit the Custom Color
Theme Setup window using the Cancel button.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

170 G P P O W E R T O O L S

Usability Tab
The Usability tab contains settings for improving the usability of Microsoft
Dynamics GP.

The following is a description of the individual fields on the window:

Display dialog on login for this company
This setting can be used to display a dialog after a user has logged into
a company. The settings are No Message on Login or one of the two
choices below:

Test Company Message: “This company is set up for testing only.
Do not use this company when processing live data.”

Historical Company Message: “This company is used for storing
historical information only. Do not use this company when
processing current-year data.”

This feature is providing a user interface to the existing dialog
functionality as described in Knowledge Base (KB) article 885542:

http://support.microsoft.com/kb/885542

This feature takes effect on the next login or after switching company.

http://support.microsoft.com/kb/885542

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 171

GP Power Tools resolves the issue when companies marked as Test or
Historical with their Company Name containing <TEST> or
<HISTORICAL> do not display the appropriate warning dialog on login on
a non-English system.

Change Window Titles in Windows Start Bar
This setting can be used to prefix the window titles as seen in the
Windows Start Bar with the User ID or User Name and/or Company
ID or Company Name.

This feature is useful when running multiple instances of Microsoft
Dynamics GP on a single workstation. It allows users to easily identify
which window belongs to each instance of the application by
displaying the User ID or User Name and/or Company ID or
Company Name in the Windows Start Bar.

This feature takes effect on next login or after switching company.

When running on the Web Client, the Change Window Titles in Windows
Start Bar option is disabled as it is not supported.

Prevent application windows from opening outside of the visible
desktop area
This setting checks the location of all windows as they open and if
they will not be in the visible desktop, their position will be adjusted
to make sure they are fully visible.

When this checkbox is selected, you can use the Users Button to
open a window to allow selection of the users and/or companies, or
User Class, Security Role, Security Task or Security Modified Alternate
ID to apply this feature to. A red visual cue will be displayed if there
are user settings present.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

172 G P P O W E R T O O L S

This feature takes effect on next login or after switching company.

The Window Position Memory window can be used to disable specific
windows from this feature if they are hidden windows which are now being
displayed when they should remain hidden.

Disable Window Position Memory feature
When this checkbox is selected, the Window Position Memory feature
will be disabled. Takes effect immediately for current workstation and
on next login for other workstations.

When this checkbox is selected, you can use the Users Button to
open a window to allow selection of the users and/or companies, or
User Class, Security Role, Security Task or Security Modified Alternate
ID to apply this feature to. A red visual cue will be displayed if there
are user settings present.

Add extra width to company name drop-down list on Company
Login window
This setting expands the fields on the Company Login window to use
the full width of the window to make it easier to read long company
names. This feature uses the MBS_Debug_CompanySwitchWidth
Dex.ini setting.

This feature takes effect on next login or after switching company.

Disable automatic closing of Login window and Company Login
window
By default, GP Power Tools will close the Login window and
Company Login window if they have been left open for a long period
of time (defaults to 5 minutes). Selecting this checkbox disables this
functionality.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 173

It is recommended to leave this feature enabled with the checkbox unselected
so that the Login window and Company Login windows close automatically
when they have been accidentally left open. For a new session, this will exit
the Microsoft Dynamics GP rather than leaving the application running
without a record in the ACTIVITY table. For an existing session, this will
return to the application which also allows the Automatic Logout feature to
work (if it is enabled).

Number of minutes to wait before attempting to close windows
This setting specifies the number of minutes before GP Power Tools
will attempt to close the Login window or Company Login window if
they are left open.

Disable automatic closing of Report Writer Screen Output window
By default, GP Power Tools will close the Report Writer Screen Output
window if it has been left open for a long period of time (defaults to 5
minutes). Selecting this checkbox disables this functionality.

Closing the Report Writer Screen Output window automatically allows the
background processing queue to continue, meaning that background.
scheduled and timed processes will not be held up indefinitely by a report that
has been left open.

Number of minutes to wait before closing Screen Output window
This setting specifies the number of minutes before GP Power Tools
will attempt to close the Report Writer Screen Output window if they
are left open.

Cleanup user activity records for disconnected users before login
and logout
When this setting is enabled, GP Power Tools will identify users
whose SQL Sessions have been disconnected and cleanup activity
records for the disconnected users on login and logout. When this
option is enabled, the requirement to remove user activity manually
should rarely be required.

Prevent user activity until login processes have completed
When this setting is enabled, the modal dialog below will be displayed
during the login process until all background processing has been
completed. This will prevent a user accessing items on the menu
navigation until the cleanup of the menus based on user security has
been completed.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

174 G P P O W E R T O O L S

After Login warn user when password is due to expire
When this setting is enabled, on the first login of the day GP Power
Tools will check if the current user’s password will expire and if the
number of days is less than the specified warning period, a dialog will
be displayed offering the user to change their password.

This feature was added to avoid the situation where a user’s password
could expire at the SQL Server level while they are currently logged
into Microsoft Dynamics GP.

Number of days prior to password expiry to start warnings
This setting controls the number of days warning for the password
expiry warning.

After logging in, if the user’s password is going to expire within the
selected number of warning days, the following dialog will be
displayed.

Selecting Yes will automatically open the User Preferences Password
window to allow the user to change their password.

This feature only works for SQL Server 2008 systems or later.

Disable write checks for Temp, Data and Logging folders
By default, GP Power Tools will check that write access is available for
these three folders. Selecting this checkbox disables this functionality.

Warn user if drive space for Temp, Data or Logging folders below
Use this setting to specify how much available space is the minimum
value before the system starts to warn users on login. The default is
50MB. If the drive space for one of these three folders falls below the
threshold value, a dialog will be displayed during login.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 175

Disable SQL Server Version check for versions before system
requirements

Use this setting to disable the check on login that the SQL Server
version in use meets the minimum supported version as described at
the bottom of the System Requirements for Microsoft Dynamics GP
article.

Disable check that Next Note Index is higher than maximum used
Note Index

Use this setting to disable the check on login that the Company’s Next
Note Index is higher than the maximum used Note Index in the
Record Note Master (SY03900) table. This is a quick check that there
might be bigger problems with Note Indexes. Use the Note Fix Utility
in the Database Tools module to fix issues with Note Indexes.

If the Next Note Index warning dialog is not displayed when logging into a
company, it is not an indication that there are no Note Index issues for that
company. It is purely an indication that this very specific quick check did not
find the issue it was looking for. The issue being checked is that the Next Note
Index for the current company stored in the Company Master (SY01500)
table in the system database is less than the maximum note index used in the
Record Note Master (SY03900) table in the company database.

Suppress Next Note Index warning for Test and Historical
Companies

Use this setting to suppress the above warning for Test and Historical
Companies. The next Note Index in the Company Master table in the
System Database is usually incorrect after a live company database has
been restored into a test company database. This option will stop GP
Power Tools warning about this issue.

Only require System or Administrator Password to be entered once
per session
When this setting is enabled and you are asked for the System
Password or GP Power Tools Administrator Password, a correct
answer will be remembered for the rest of the session and you will not
be required to enter the password until you log off or change
company.

https://learn.microsoft.com/en-us/dynamics/s-e/gp/mdgp2018_system_requirements?WT.mc_id=DX-MVP-5001569

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

176 G P P O W E R T O O L S

Features Tab
The Features tab contains settings for adjusting the behavior of various
features of GP Power Tools.

The following is a description of the individual fields on the window:

Settings Applied Message
This drop-down list allows the selection of how the “Settings Applied”
message should be displayed when click the Apply button on the
various settings windows in GP Power Tools.

Default Export Mode
Use this drop-down list to select the default Export Mode to be used
on windows which support exporting of data.

Include Dex.ini Settings File
This checkbox specifies the default setting for ScreenShot.

Include User Dex.ini Settings File
This checkbox specifies the default setting for ScreenShot.

Include Current Launch File
This checkbox specifies the default setting for ScreenShot.

Include info for all databases
This checkbox specifies the default setting for ScreenShot.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 177

Automatic Open Mode
This option controls whether the Security Profiler window should
automatically open when a security error occurs. The options are Do
not open Automatically, Open on Errors only; and Open on Error &
Warnings.

An Error is a situation that will cause the application to generate a dictionary
not loaded or permission denied error dialog. A Warning is a situation where
no error dialog will be generated, but the resources defined in the settings will
not be opened as expected.

Disable updating Security Privilege warning to include form name
This option controls whether the Security Privilege warning dialog
(screenshot below) includes additional information about the resource
for which security access has been denied.

By default, once GP Power Tools is installed, additional information
will be included on the dialog (screenshot below). This will help
administrators identify the issues even if the Security Profiler window
is not in use.

Enabling this option will disable the additional information and revert
back to the standard dialog.

Disable logging of Security Errors and Warnings
This option disabled the logging of Security Errors and Warnings to
the GPPTools_<User>_<Company>.log log files.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

178 G P P O W E R T O O L S

Enable Security Activity Tracking
This option enables the recording of statistics for all Security events to
track the number of times resources are accessed and whether the
access for granted or denied. Use the Security Log window to review
the data captured.

When saving after this option has been disabled, if the logs contain
data, a dialog will be displayed asking if you wish to remove the data.

Enable Security Activity Tracking with detail
This option enables the recording of details of all Security events to
track each time resources are accessed and whether the access for
granted or denied. Use the Security Log window to review the
detailed data captured.

This feature can be controlled on a per user and/or company or by User Class,
Security Role, Security Task or Security Modified Alternate ID. This will
allow the amount of detailed data captured to be restricted if desired.

When saving after this option has been disabled, if the logs contain
data, a dialog will be displayed asking if you wish to remove the data.

Days to keep detailed log data for
This option specifies how many days to keep detailed logging data for
before it is automatically removed.

Enable Security Activity Tracking when opening Smartlist
This option re-enables the recording of Security events when opening
the Smartlist window. By default, capturing this information has been
disabled as it can cause performance issues especially when your
system has a large number of Smartlist favorites.

Disable User Setup Additional Information window automatically
opening
When this checkbox is selected, the User Setup Additional Information
window will not open automatically when the User Setup window is
opened. The position of the window when it opens, Below or to the
Right of the User Setup window can be selected.

This window is used store additional information against each
Microsoft Dynamics GP user. The User Email Address is used by the
Database Validation feature to send emails when resetting users’
passwords.

If a default company is selected and the system is currently logged
into that company, the lookups can be used to select Employee ID and
related information.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 179

The Default Site ID field is used to auto populate the Default Site on
the following windows:

• Item Transaction Entry
• Item Transfer Entry
• Item Enquiry
• Sales Transaction Entry
• Invoice Entry
• Purchase Requisition Entry
• Purchase Order Entry
• Receivings Transaction Entry

There are also four User Defined String fields and two User Defined
Date fields. The prompts for these six fields can be defined using the
following option on the Administrator Settings window.

The User Setup Additional Information window is synchronized with
the User Setup window so the information is displayed, saved and
deleted using the controls on the User Setup window. Clicking the OK
Button on the window, just closes the window, but does not save
anything until the user is saved.

Even if the User Setup Additional Information window does not open
automatically, it can be opened using the Additional Menu on the User Setup
window or pressing the Ctrl-I keyboard shortcut.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

180 G P P O W E R T O O L S

Change User Setup Additional Information User Defined Field
Prompts
Click the Edit Button to open the window to change the prompts for
the User Defined String fields and User Defined Date fields used on
the User Setup Additional Information window.

If the Developer Tools module is registered, the string user defined fields can
be linked to lookups and optionally validated against the rows in the lookup to
ensure the record entered does exist. This uses the SQL Lookup feature which
is usually used on the Parameter List Maintenance window.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 181

License Tab
The License tab contains settings for enabling and disabling License
Management features of GP Power Tools.

The following is a description of the individual fields on the window:

Enable User Activity Tracking
When this checkbox is selected, the User Activity Log feature will be
enabled. Takes effect immediately for current workstation and on next
login for other workstations.

The User Activity Log tracks statistics when users’ login and logout
and tracks the daily maximum session count on a system, user and
company basis.

When saving after this option has been disabled, if the logs contain
data, a dialog will be displayed asking if you wish to remove the data.

Enable User Activity Tracking with detail
This option enables the recording of detailed logs of each login and
logout event. Use the User Activity Log window to review the detailed
data captured.

This feature can be controlled on a per user and/or company or by User Class,
Security Role, Security Task or Security Modified Alternate ID. This will
allow the amount of detailed data captured to be restricted if desired. A red
visual cue will be displayed if there are user settings present.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

182 G P P O W E R T O O L S

When saving after this option has been disabled, if the logs contain
data, a dialog will be displayed asking if you wish to remove the data.

Days to keep daily Max User and detailed data for
Use this setting to control for how many days the daily maximum
session count data and detailed logging data are kept. This data
includes a list of the sessions logged into Microsoft Dynamics GP
when the maximum count was reached.

Enable Automatic Logout of inactive users
When this checkbox is selected, the Automatic Logout feature will be
enabled. This feature takes effect immediately for current workstation
and on next login for other workstations.

Automatic Logout mimics the user selecting File >> Exit from the
menus and so will perform a well-behaved exit of Microsoft Dynamics
GP. It does NOT do anything that will force terminate the application,
as this is dangerous and can cause orphaned data and data corruption.

Automatic Logout uses timed background process which executes
every minute and will attempt to logout once the user has been
inactive for more than the number of minutes specified. You can look
at the Process Monitor to see the process and its current status.

Use the After X Minutes field to define how long a user must be
inactive before Automatic Logout attempts to log out of Microsoft
Dynamics GP.

When this checkbox is selected, you can use the Users Button to
open a window to allow selection of the users and/or companies, or
User Class, Security Role, Security Task or Security Modified Alternate
ID to apply this feature to. A red visual cue will be displayed if there
are user settings present.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 183

To facilitate the smooth running of the Automatic Logout functionality when
the Send Users Message feature of Microsoft Dynamics GP is used, GP
Power Tools replaces the system dialog popup windows with custom forms.
This behavior can be controlled with the MBS_Debug_UserMessageReplace
Dex.ini setting.

Enable a first optional override level
When this checkbox is selected, you can enter an optional shorter time
limit for Automatic Logout.

Use the Users Button to select the users and/or companies, or
User Class, Security Role, Security Task or Security Modified Alternate
ID to apply this shorter time level to.

Enable a second optional override level
When this checkbox is selected, you can enter an optional longer time
limit for Automatic Logout.

Use the Users Button to select the users and/or companies, or
User Class, Security Role, Security Task or Security Modified Alternate
ID to apply this longer time level to. A red visual cue will be displayed
if there are user settings present.

Enable an additional user license sensitive level
When this checkbox is selected, the Automatic Logout feature will
check the number of available licenses remaining and once it reaches
the specified threshold, Automatic Logout will use a shorter time
before attempting to log out. This allows the feature to get more
aggressive with logging out inactive users when the available licenses
are low.

Use the When only X% of licenses available field to define at what
percentage of available licenses remaining does the second level of
Automatic Logout activate.

Use the After X Minutes field to define how long a user must be
inactive before the second level of Automatic Logout attempts to log
out of Microsoft Dynamics GP.

Select Automatic Logout hours
When this checkbox is selected, you can enter business hours and
work days during Automatic Logout will not be active. Using this
option will not help limit user license usage during the day, but will
help ensure users are logged out outside of business hours.

Use the Users Button to select the users and/or companies, or
User Class, Security Role, Security Task or Security Modified Alternate
ID to apply this feature to. A red visual cue will be displayed if there
are user settings present.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

184 G P P O W E R T O O L S

Check for SQL activity before logging out inactive users
When this checkbox is selected, the Automatic Logout feature will
check for the last activity at the SQL Server level before logging out.
Enabling this option is not recommended as other background timed
processes can update the last SQL activity and thus prevent Automatic
Logout from working. There is a warning displayed when selecting
the option.

Disable Automatic Logout warning dialog when logging out
When this checkbox is selected, the Automatic Logout feature will
disable the Automatic Logout Warning Dialog window which counts
down the final minute and gives the user the choice to Exit Now or
Cancel.

When this checkbox is selected, you can use the Users Button to
open a window to allow selection of the users and/or companies, or
User Class, Security Role, Security Task or Security Modified Alternate
ID to apply this feature to. A red visual cue will be displayed if there
are user settings present.

If the User Activity Log feature is enabled, statistics are tracked on how many
times a user cancels this dialog as well as how many times the Automatic
Logout feature triggers and how many of those times resulted in a successful
attempt to logout.

Disable Automatic Logout warning dialog taking focus
When this checkbox is selected, the Automatic Logout feature will
disable the Automatic Logout Warning Dialog window attempting to
take focus and jump to the foreground when it refreshes each second
of the countdown. You can use the Test Button to open the dialog on
request to test the behavior of the dialog.

Please note that if you click Exit Now on the dialog, even when opened with
the Test Button, Automatic Logout will attempt to exit Microsoft Dynamics
GP.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 185

Attempt to save changes on open windows when logging out
When this checkbox is selected, the Automatic Logout feature will
attempt to close open windows in reverse order to when they were
opened. If a window needs saving and has all required fields entered,
Automatic Logout will simulate the user selecting the Save Button or
OK Button.

This additional “smart” option will increase the chances of a
successful log out even if a user leaves their screen with unsaved data
while ensuring that their changes are not lost.

Attempt to close open Inquiry windows when logging out
When this checkbox is selected, the Automatic Logout feature will
attempt to close open Inquiry windows by clearing them.

This additional “smart” option will increase the chances of a
successful log out even if a user leaves an Inquiry window with
invalid data in a field.

Remove ACTIVITY table record to make license available
When this checkbox is selected, the Automatic Logout feature will
remove the current user’s record from the ACTIVITY table. This will
allow the user to finish working on the window they were using, but
they will be unable to open any new windows.

This additional “smart” option will free up the license to be used by
other users while still allowing the current user to complete the task
they were working on.

Please note that if there are windows which cannot be closed or if a dialog
opens, the Automatic Logout attempt will be suspended until the dialogs have
been handled by manual intervention.

Date Change Dialog Behavior
Use this option to override the SuppressChangeDateDialog and
SuppressChangeDateForce Dex.ini settings to control the behavior of
the Date Change dialog that normally will open at midnight.

Using the default setting of Hide Dialog, Update Date Automatically will
allow the date to change automatically at midnight without opening a dialog.
This will avoid the dialog stopping background, scheduled and timed
processes being held up while the dialog is open.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

186 G P P O W E R T O O L S

Dex.ini Configuration

You can open the Dex.ini Configuration window by selecting Dex.ini
Configuration from the Setup section of the GP Power Tools Area Page or
by selecting Administration >> Dex.ini Configuration from the Options
button drop list on the main window. This is an Advanced Mode feature.

The Dex.ini Configuration window can be used to automate changes to
Dex.ini settings for all workstations in the system.

The following is a description of the individual fields on the window:

Settings List
This list contains the Dex.ini settings to be checked on login. The
setting can be specified with an exact value (this is needed to add a
new setting), or can be specified using a “contains” or “begins with”
search. The search can be applied against the Dex.ini settings listed in
the Dex.ini file (i.e. left of the = sign) or against the entire line in the
file. Using a search can find and update multiple lines in the Dex.ini
file if more than one setting or line meets the Search Mode and Search
String criteria.

The Silent checkbox should be checked (default) if the Dex.ini setting
should be updated without asking the user.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 187

The Log checkbox should be checked (default) if the Dex.ini setting
changes should be recorded in the Debugger log files.

The Value field contains the value to change the Dex.ini setting to.
Leaving this field blank will remove the Dex.ini setting from the
Dex.ini file.

The Target Dex.ini field allows the selection of whether this setting
should be applied to the Global Level Dex.ini file (default), to the User
level Dex.ini file, or to Both Dex.ini files.

Before the line in the Setting List is saved, it is checked for possible damaging
settings and if they exist an additional confirmation is required. Possible
changes to the following Dex.ini settings are detected: Pathname, Initial,
Synchronize, Workstation, Workstation2, FileHandler, DatabaseType.

Do not update any Dex.ini settings automatically
This field can be used on individual workstations to prevent GP
Power Tools from automatically changing any Dex.ini Settings. It will
update the MBS_Debug_ConfigurationOverride Dex.ini setting. This
can be useful on test or administration workstations which might not
want their Dex.ini settings changed.

Capture reads of settings not in Dex.ini file
Select this checkbox to ask GP Power Tools to capture a log of any
Dex.ini settings with are read but do not exist in the Dex.ini file. This
option can be used to find Dex.ini settings that are undocumented.

Care should be taken when using undocumented Dex.ini settings as the
effects of the setting cannot be fully known unless access to the source code
that references the setting is available.

Print Button
Use this button to print the Dex.ini settings read that do not exist in
the Dex.ini file captured.

The Apply Button can be used to save the changes to the setup files
without closing the window.

Click the Info button to display a list of Dex.ini settings that can be
changed by the current Search Mode and Search String criteria. The
Display Dex.ini Settings window will open.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

188 G P P O W E R T O O L S

Setting changes specified in the Dex.ini Configuration window are
checked against the Dex.ini file when a user logs in. The system looks for
settings which differ from the specified values. If the change is marked as
Silent, the setting will be automatically updated.

If any changes need to be made where the Silent checkbox is not selected,
then the user will be presented with a dialog asking them to confirm
which changes should be applied.

If a user opts to deselect a Dex.ini change that setting will be displayed again
when the user logs in again or changes company.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 189

You can use the Edit Dex.ini button to open the Dex.ini Settings Inspector
window. This window allows viewing and editing of both the Global and
User level Dex.ini settings.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

190 G P P O W E R T O O L S

Dictionary Control

You can open the Dictionary Control window by selecting Dictionary
Control from the Setup section of the GP Power Tools Area Page or by
selecting Administration >> Dictionary Control from the Options button
drop list on the main window. This is an Advanced Mode feature.

Dictionary Control can be used to troubleshoot issues with third party
dictionaries. You can effectively remove dictionaries from the system one-
by-one until the issue stops. Then the last dictionary to be removed can be
investigated further.

You can use Trigger Status to disable Dexterity triggers for a specific
Product in a similar fashion to the Customization Status window in
Microsoft Dynamics GP. The added benefit of Dictionary Control is that it
can remember the settings and automatically disable the product on the
next login.

Dictionary Control can also disable alternate and/or modified windows
for third party dictionaries using the Alternate Status option. This does
not change any security settings.

The drop-down lists at the bottom of the window can be used to change
settings for all dictionaries.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 191

Using Dictionary Control to disable the triggers and alternate windows for a
third party dictionary can produce the same effect as removing the dictionary from
the Dynamics.set launch file without requiring any backups or manual editing.

If you set a product to one of the “after login” options, you can use the
User button in the top right corner of the window to specify which users
and companies should have this dictionary control setting in effect after
logging in. Once clicked the Disabled After Login for Users window will
open.

You can view this window by Users and/or Companies, User Classes,
Security Roles, Security Tasks or Security Modified Alternate IDs and
navigate the tree to select the options as required.

If all users are selected on the tree, the tree selections will be cleared and the mode
will change from Selected Users and Companies to All Users and Companies. If
no users are selected on the tree, the mode will change to All Users and
Companies.

The Exclude Selected Users and Companies rather than include them
option allows you to invert the behavior of the window. This is handy
when it is easier to specify the users and companies for whom the
disabling should not take effect.

Sometimes issues can occur because of the order of the dictionaries in the
system. Different dictionaries adding triggers for the same event in the
application can sometimes clash causing unexpected or undesirable
results. The order that triggers from different products will execute is
affected by the order of the products in the Dynamics.set Launch File. By
changing the order of the products, you can change the order of the
triggers and avoid the issues.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

192 G P P O W E R T O O L S

Under most circumstances having two or more dictionaries triggering from the
same event would not cause any problems regardless of the order the triggers are
executed in. Sometimes, a trigger from one dictionary can make changes to data
which affect the behaviour of a trigger from a second dictionary thus causing the
code to fail. It is this type of situation which can often be fixed by re-ordering the
dictionaries.

Dictionary Control allows the order of the products to be changed using
the Top, Up, Down and Bottom buttons. You can also remove a product
with the Delete Button. Any changes to the Dynamics.set launch file will
be saved when OK is clicked. You will be requested to restart Microsoft
Dynamics GP after the changes have been saved.

A backup of the original file will be saved as Backup X of Dynamics.set,
where X will be a number starting at 1.

If using the Dictionary Control window to disable access to modified windows be
aware that by displaying the original window, users might have access to fields
previously hidden or disabled on the modified version of the window.

If User Account Control (UAC) is preventing write access to the application
folder, you will see the following dialog displayed. You will need to use Run as
Administrator to allow access and complete the changes.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 193

Dictionary Control now has the ability to disable Visual Basic for
Applications (VBA) and Visual Studio Tools (VSTools) on next login.

The following is a description of the additional checkboxes on the
window.

Disable Visual Basic for Applications (VBA) on next login
This checkbox disables Visual Basic for Applications (VBA) when the
application is restarted. This option uses the VBADisable Dex.ini
setting.

Enable Visual Basic for Applications after one login
This checkbox automatically re-enables Visual Basic for Applications
(VBA) for the application after the first restart. This option uses the
MBS_Debug_VBADisableReset Dex.ini setting.

Disable Visual Studio Tools (VST) Addins on next login
This checkbox disables Visual Studio Tools (VST) Addins when the
application is restarted. This option uses the MBS_Debug_VSTDisable
Dex.ini setting.

Enable Visual Studio Tools Addins after one login
This checkbox automatically re-enables Visual Studio Tools (VST)
Addins for the application after the first restart. This option uses the
MBS_Debug_VSTDisableReset Dex.ini setting.

The Visual Basic for Applications and Visual Studio Tools options are not
available if running on the Web Client. The Visual Studio Tools options will be
disabled if User Account Control (UAC) is preventing write access to the
application folder. This is because the Dynamics.exe.config file must be renamed
as part of the process of disabling Visual Studio Tools Addins.

Disabling Visual Studio Tools will disable the ability to execute .Net scripts
(Visual C# or Visual Basic.Net) as well as the ability to execute Dexterity
sanScript in the context of a Modified dictionary.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

194 G P P O W E R T O O L S

If you want to check exactly what is contained in the Dynamics.set launch
file and confirm that each line is in the correct position you can click the
Info button to open the Show Launch File window.

The Description column in this window describes what information
should be on the current line of the file for the file to be valid.

To use Dictionary Control, a user must have security access to the Customization
Status window. This window may have access disabled automatically on each
login when using Field Level Security and Field Security IDs are active for the
current user and company.

Dictionary Control cannot be used to disable alternate windows and forms or
triggers in GP Power Tools. As the core Microsoft Dynamics GP dictionary
cannot have alternate windows, Dictionary Control cannot be used to disable
alternate windows.

When running on the Web Client, Dictionary Control cannot be used to modify
the launch file and so the movement and delete buttons are disabled.

Dictionary Control handles checks by third party products of the security
tables to ensure they correctly identify which version of a window is
currently open. This prevents triggers running on the incorrect version of
a window and generating errors.

To disable SQL Triggers which might be used for customizations, use the SQL
Trigger Control window in the Database Tools module.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 195

Company Login Filter

You can open the Company Login Filter window by selecting Company
Login Filter from the Setup section of the GP Power Tools Area Page or by
selecting Administration >> Company Login Filter from the Options
button drop list on the main window. This is an Advanced Mode feature.

The Company Login Filter window is used to set up filtering and re-
ordering of the companies available in the Company Login window for a
user depending on the instance of the application environment currently
being used. The companies available for a specific instance of the
application environment can be controlled by a Dex.ini Setting which
selects the active Company Login Filter profile and optionally by path of
the Launch File used to start Microsoft Dynamics GP (usually
Dynamics.set).

Examples of Use:

• On a multinational system, where different countries or regions have
different localization dictionaries (such as VAT or GST), you can
ensure that a company database is only used with the matching
application client for each company.

• On a system with different customization dictionaries or different
custom forms and reports for different companies, you can ensure that
the correct companies can only be used with the appropriate
application client.

s

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

196 G P P O W E R T O O L S

The following is a description of the individual fields on the window:

Profile ID
This field contains a unique identifier for each Company Login Filter
profile in the system. The lookup button can be clicked to select from
existing profile IDs.

Note that the Profile IDs starting with the prefix character of tilde (~) are
reserved for use by Microsoft Support.

Profile Name
This field contains a description for the Company Login Filter profile.

Enable current Profile on this workstation
Selecting this field will set the MBS_Debug_CompanyFilter Dex.ini
Setting for the current workstation to the current Profile ID.

If enabling a Profile ID without any companies selected for the Default
Path, the following warning will be displayed:

If you get locked out of Microsoft Dynamics GP because Company Login
Filter removes access to all companies even when logging in as the ‘sa’ user,
edit the Dex.ini file and remove the MBS_Debug_CompanyFilter setting.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 197

Roll out Profile using Dex.ini Configuration
Selecting this option will insert a record into the Dex.ini Configuration
window to automatically roll down the Profile to all workstations and
servers in the system.

Share User Settings for all Launch File Paths
Selecting this option will allow the same user settings selected using
the Users Button to be used for all Launch File Paths. This means that
enabling or disabling a user only needs to be done once rather than for
each Launch File Path.

Show Disabled Companies
Selecting this field will display disabled companies at the bottom of
the drop-down list instead of removing them entirely with the prefix
entered into the next field.

Using the Show Disabled Companies option provides a visual indication of
the companies a user has security access to but cannot use from the current
application instance.

Auto select if only one Company
Selecting this field will automatically select the company if there is
only one company available after the filter has been applied.

Hide “Remember this Company” checkbox
Selecting this checkbox will hide the “Remember this Company”
checkbox from the Company Login window.

Prefix for Disabled Companies
Use this field to define a prefix to be used when showing disabled
companies instead of removing them from the drop-down list.

Display Company Database
This field is used to select if the Company Database is shown on the
drop-down list and whether it is shown as a prefix or suffix to the
Company Name.

Company Display Sort Order
This field is used to select the order that the companies are listed in the
drop-down list. This includes a Custom Defined Order, which can be
set using the right hand Top, Up, Down and Bottom buttons.

The following is a description of the additional buttons on the window:

Duplicate Button
Use this button to duplicate the current profile ID to a new profile ID.
This is useful when an existing profile ID is very similar to the new
one you want to create.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

198 G P P O W E R T O O L S

A new profile ID must be specified in the dialog which opens.

Users Button
Use this button to enable or disable access to a company based on
Users and/or Companies, User Classes, Security Roles, Security Tasks
or Security Modified Alternate IDs.

Depending on if the Share User Settings for all Launch File Paths
option is selected, access can be control for all Launch File Paths or
individually for each Launch File Path.

You can view this window by Users and/or Companies, User Classes,
Security Roles, Security Tasks or Security Modified Alternate IDs and
navigate the tree to select the options as required.

If all users are selected on the tree, the tree selections will be cleared and the
mode will change from Selected Users and Companies to All Users and
Companies. If no users are selected on the tree, the mode will change to All
Users and Companies.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 199

The Exclude Selected Users and Companies rather than include them
option allows you to invert the behavior of the window. This is handy
when it is easier to specify the users and companies for whom the
disabling should not take effect.

Check User Button
Use this button to open the Company Login Filter Check window
which will display reasons that a user might not be able to access a
company. This window is designed to help prevent Company Login
Filter blocking access to the application.

The Company Login Filter Check window will also open automatically if the
current user is about to lock themselves out of the Microsoft Dynamics GP
application due to settings in the Company Login Filter window. The
Company Login Filter Check window can also be accessed from the User
Access Setup window via the Additional menu.

When setting up a Company Login Filter you can create a new profile ID
for each application folder than is using a separate Dex.ini file. If you are
using a single application folder with a single Dex.ini file with different
Launch File names or paths, you can use a single profile ID with multiple
paths specified.

When a profile is created, it will always have a default path created named
“Default Filter when no Path matched”. This default path will always be at
the top of the list of paths.

You may add additional paths which are checked with a case insensitive
“contains” comparison against the current Launch File path. The
comparisons for the paths are executed in the order the paths are listed on
the window. If no paths are matched, the default path will be used.

For each path in the left-hand pane, you can select which companies will
be can be accessed in the right-hand pane.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

200 G P P O W E R T O O L S

You can add a Path using the Add Button or using the button drop-down
list at the top of the left-hand pane.

Company Login Filter allows the order of the paths to be changed using
the left hand Top, Up, Down and Bottom buttons.

You can also edit an existing path with the Edit Button or double clicking
on it. You can also remove a path with the Delete Button.

Once the setup has been completed, upon login if the
MBS_Debug_CompanyFilter Dex.ini Setting has a value and the profile can be
found, then the paths are compared and a set of company access settings will be
used to restrict access on the Company Login window. If there are no valid
companies available, a message to say that will be displayed.

If you create a Company Login Filter configuration that denies you access to all
companies and you can no longer log into Microsoft Dynamics GP, delete the
MBS_Debug_CompanyFilter Dex.ini Setting to regain access and then adjust
your settings as required.

To attempt to avoid this situation the following warning is displayed when saving
a profile which does not have any companies enabled for the Default Path:

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 201

Window Position Memory

You can open the Window Position Memory window by selecting
Window Position Memory from the Setup section of the GP Power Tools
Area Page or by selecting Administration >> Window Position Memory
from the Options button drop list on the main window. This is an
Advanced Mode feature.

The Window Position Memory window is used to specify which windows
in the Microsoft Dynamics GP application should remember their position,
size and state on a per user basis. Any window (form) in any dictionary
can be added to the list and all sub-windows on selected window (form)
will be remembered.

You can also disable the Window Position Check functionality enabled in
Administrator Settings (Prevent application windows from opening
outside of the visible desktop area) on a per window basis for hidden
windows that need to remain hidden.

Below is a description of the individual fields on the window:

OK Button
This button will save the settings and close the Window Position
Memory window.

Cancel Button
This button will close the Window Position Memory window without
saving any changes made.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

202 G P P O W E R T O O L S

Mark All Button
This button will select all windows (or all highlighted windows)
currently showing in the right-hand pane.

Unmark All Button
This button will de-select all windows (or all highlighted windows)
currently showing in the right-hand pane.

If de-selecting a window that has user data associated with it, you will
be warned that this data will be removed when the list of active
windows is saved. Click “Don’t ask again” if you wish the warning to
be hidden for the rest of the time the window is open.

Default Button
This button will add the default windows back to the list. The default
windows include the main transaction, inquiry and cards windows
from all core modules and the SmartList window.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 203

Reset Button
This button will open the Reset Window Position Memory Settings
window.

This window allows the administrator to reset the already stored
window position, size and state data for the selected users. Once reset,
the windows will open in the default position, size and will store
settings again when it is closed.

Users can reset their own settings without needing the help of an
administrator using the Reset Window Memory Settings option from
the Additional menu on the User Preferences window.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

204 G P P O W E R T O O L S

Users can also reset their own settings from the Dex.ini Settings
window using the Reset Window Positions button which resets both
GP Power Tools windows and windows controlled by Window
Position Memory.

Hidden Forms
Use this checkbox to enable the display of windows normally hidden
by the system. This might be required if the window you want to add
cannot be found.

Warnings
Use this checkbox to disable or re-enable the warnings when removing
windows from Window Position Memory.

Override system resizable check
Use this checkbox to override system resizable check and mark all
windows on the selected form as resizable. Use this option when
Window Position Memory fails to remember the new size of a window
because it decided that the window was not resizable.

When the Microsoft Dynamics GP node or All dictionary node on the left-hand
tree is selected, the right-hand list will contain all of the currently active windows.
When specific dictionary node is selected, the right-hand list will contain all of the
currently active windows in that dictionary. When any other nodes are selected,
the right-hand list will contain all windows in the application for the selected
dictionary and series with the currently active windows showing as checked.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 205

When Window Position Memory has been enabled for the SmartList window, GP
Power Tools takes over control of handling the window from SmartList and makes
it behave correctly. There is an issue on the latest versions of Microsoft Dynamics
GP when the ribbon is enabled on the desktop client where the window size
shrinks each time it is opened. There is also an issue when the SmartList window
is closed while maximized. Both of these issues are fixed when GP Power Tools has
control.

The Window Position Memory feature can be disabled using the Usability Tab of
the Administrator Settings window. Changing this option will take effect
immediately on the current workstation and on next login for other workstations.

The Window Position Memory window can be used to disable specific windows
from this feature if they are hidden windows which are now being displayed when
they should remain hidden.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

206 G P P O W E R T O O L S

User Activity Log

You can open the User Activity Log window by selecting User Activity
Log from the Setup section of the GP Power Tools Area Page or by
selecting Administration >> User Activity Log from the Options button
drop list on the main window. This is an Advanced Mode feature.

The User Activity Log window displays the data captured by the User
Activity Tracking option which can be enabled from the Administrator
Settings window using the Enable User Activity Tracking option.

Once the User Activity Tracking is enabled, all user login and logout
events are tracked. The logging does not track individual events, but
instead totals up the number of events so you can see which users are
logging in the most. It also tracks the last three login events for a user.
Data from the Automatic Logout feature are also tracked, Automatic
Logout can be enabled from the Administrator Settings window.

Each event is tracked for the user and company, user, company and
system wide, and you select how you want to view the data.

Below is a description of the individual fields on the window:

Display Mode
This drop-down list allows you to select whether your wish to view
data for the selected user and company, for a specific user or company
or for all users and companies.

The Machine Name Display Mode can be used if you want to see
which workstations or servers are being used.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 207

User ID
Use this field to select the User ID to display.

Company
Use this field to select the Company to display.

Sort Mode
This drop-down list can be used to select the order that the User
Activity Log entries are initially displayed in. You can also adjust the
sort after the data is displayed by clicking on the column headers.

Filter Modes
These drop-down lists can be used to filter the User Activity Log
entries. You can select to filter by User Status and User Type.

OK Button
This button will close the User Activity Log window.

Redisplay Button
This button can be used to redisplay the current contents of the User
Activity Log data to the window.

Open Button
This button will open the User Setup window for the selected User.

Max. Users Button
This button will open the User Activity Log Maximum Users window.

This window displays a graph of the daily maximum sessions on a
system, per user or per company basis. The graph can be viewed for a
date range or showing the maximum values first.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

208 G P P O W E R T O O L S

The graph is auto scaling and hovering over any bar will show a
tooltip with the date and maximum value on that date. Clicking on a
bar will display a list of the logged in sessions when the maximum
occurred.

Export Button
This button will allow the result set displayed in the list view to be
exported to a file or directly to an email. The default email settings can
be set up in the Email Settings window.

Export Mode
Use this drop-down list to select the format for the exported file. The
file can be exported as Tab Delimited, Comma Delimited or as a
HTML Table.

Details Button
This button will open the User Activity Log Detail window to display
individual records of each login and logout event. Turn the capture of
this detailed data on from the Administrator Settings window.

The Automatic Logout feature records information in the User Activity
Log. Below is a list of the columns shown in the log:

• Auto Cancel – Number of times Automatic Logout dialog cancelled.
• Auto Count – Number of times Automatic Logout attempted to exit.
• Auto Date – Date of last Automatic Logout attempt.
• Auto Time – Time of last Automatic Logout attempt.
• Auto Exit – Number of times Automatic Logout successfully exited.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 209

Login Limits

You can open the Login Limits window by selecting Login Limits from the
Setup section of the GP Power Tools Area Page or by selecting
Administration >> Login Limits from the Options button drop list on the
main window. This is an Advanced Mode feature.

The Login Limits window is used to set up limits for how many sessions
are allowed for a user logging into Microsoft Dynamics GP. While you can
create more than one profile, only one profile can be marked as the Active
Profile and be used at any one time. The login limits options can be set on
a system wide, per user, per user and company and per company basis.

Examples of Use:

• You can limit users to one session system wide, but then mark the
system administrator and company account accounts as exempt from
the limits.

• You can reserve a license for a user to guarantee that they can always
log into the system. This reduces to available licenses for other users.

• You can mark a company as always accessible for a user, thus
allowing them to always access that company as well as one other
company. (as per the one session limit specified above).

• You can also set a limit for the maximum number of sessions that can
access specific companies, thus preventing too many sessions be used
for one company meaning none are available for another company.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

210 G P P O W E R T O O L S

The following is a description of the individual fields on the window:

Profile ID
This field contains a unique identifier for each Login Limits profile in
the system. The lookup button can be clicked to select from existing
profile IDs.

Note that the Profile IDs starting with the prefix character of tilde (~) are
reserved for use by Microsoft Support.

Profile Name
This field contains a description for the Login Limits profile.

Active Profile
Selecting this checkbox marks this profile as active so it will be applied
on next login.

The following options become enabled depending on the node selected in
the tree in left-hand pane of the window. You can select a System Node,
User Node, User and Company Node or Company Node.

Include sessions for all user types instead of just Full user
Selecting this field will adjust how the currently used sessions will be
counted. Normally only Full Users are counted, but you can opt to
include Limited or Service Users as well.

Default maximum sessions per User
Use this field to define the default system wide maximum number of
allowed sessions per User. Leave as 0 for no limit.

Reserve a license for user
Marking this checkbox will reserve a license to guarantee that the
selected user can always log into the system. When enabling this
option, the following dialog shows how many reserved licenses you
have configured and how many licenses are still available for other
users.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 211

Exempt user from system maximum sessions limit
Selecting this field will exempt the selected user.

Override maximum sessions per User
Use this field to define the override user level maximum number of
sessions for the selected user. Leave as 0 for no limit.

Always allow access to this Company
Use this checkbox to allow the selected user to always have access to
the selected company. This session is not included in the maximum
session limits specified at the system or user levels.

Maximum number of sessions for this Company
Use this field to define a maximum sessions limit for the selected
company. Leave as 0 for no limit.

To be able to set the Maximum number of sessions for this Company you will
need to change the tree to the “by Company” view using the view button drop
down list above the tree and then select the desired Company node.

The following is a description of the additional buttons on the window:

Duplicate Button
Use this button to duplicate the current profile ID to a new profile ID.
This is useful when an existing profile ID is very similar to the new
one you want to create.

A new profile ID must be specified in the dialog which opens.

Change the tree to the “by User (with settings)” or “by Company (with
settings)” views using the view button drop down list above the tree to only
see users and/or companies for which Login Limits has settings enabled. You
can also identify which users and/or companies have settings by the colored
markers on the bottom right corner of the icons on the tree.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

212 G P P O W E R T O O L S

Once configured, the active profile will be checked at login and the user
can be presented with a warning dialog when they click OK if they have
exceeded the number of sessions they are allowed:

If the maximum number of sessions for a company has been reached, the
following dialog will be displayed:

When the dialogs are displayed a log entry will also be written to the
current GP Power Tools log file.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 213

Launch File Configuration

You can open the Launch File Configuration window by selecting Launch
File Configuration from the Setup section of the GP Power Tools Area
Page or by selecting Administration >> Launch File Configuration from
the Options button drop list on the main window. This is an Advanced
Mode feature.

The Launch File Configuration window can be used to automate changes
to Dynamics.set launch file for all workstations in the system. It works by
defining rules for changes desired. These rules are checked on login and
applied (if necessary) after creating a backup.

The following is a description of the individual fields on the window:

Rule List
This list contains the rules to be checked on login. The columns show
the details for each rule.

To edit a rule, just select the row in the list and make the desired
changes. The rule will be automatically updated if all the rule field
settings are valid.

To add a rule use the Add Button and select the rule to use from
Launch File Rule drop down list. Then enter the desired changes. The
rule will be automatically updated if all the rule field settings are
valid.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

214 G P P O W E R T O O L S

Launch File Configuration allows the order of the rules to be changed
using the Top, Up, Down and Bottom buttons. This controls the order
in which the rules are applied.

You can also remove a rule with the Delete Button.

Launch File Rule
This drop down list is used to select the rule to apply to the launch file.
Depending on the selection the Rule Information will be updated, and
the Rule Fields will be enabled or disabled. Rules available are:

• Reorder by Product ID
• Reorder by Product Name
• Add New Product
• Remove Existing Product
• Rename Product Name
• Move Above Product
• Move Below Product
• Update Dictionary Paths
• Update Location ID Folders
• Update Dictionary Files
• Add Location ID
• Remove Location ID

Rule Fields
These fields will be enabled and disabled depending on the Launch
File Rule selected. The rule will be automatically updated if all the rule
field settings are valid.

When adding or removing a product, an expansion button will be available
which opens the Launch File Configuration Additional Files window. Use
this window to list additional files such as DLLs which need to be renamed
with a .bak extension when removing a product or have the .bak extension
removed when adding a product. Use the file path icon on the bottom right to
select files from the file system.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 215

Do not update the Launch File automatically
This field can be used on individual workstations to prevent GP
Power Tools from automatically updating the Launch File. It will
update the MBS_Debug_LaunchConfigurationOverride Dex.ini
setting. This can be useful on test or administration workstations
which might not want their Launch File changed.

The Apply Button can be used to save the changes to the setup files
without closing the window.

Click the Preview button to view a preview of what changes would be
made to the current workstation based on the rules defined. The Launch
File Configuration Preview window will open. Changes to the rules are
immediately reflected in the preview window.

Launch File Rules specified in the Launch File Configuration window are
checked against the current launch file (usually Dynamics.set) when a user
logs in. If any changes are required, a backup of the existing launch file
will be created, and a new updated launch file will be written. The user
will then be notified and asked to restart Microsoft Dynamics GP.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

216 G P P O W E R T O O L S

It is recommended to ensure that you do not have any rules which contradict each
other as this could create an infinite loop where GP Power Tools keeps updating
the Launch File each time Microsoft Dynamics GP is started and thus prevents
access.

If you create rules which will leave the Advanced Security product above
Smartlist in the Launch File, when saving you will be shown the dialog below
which will offer to add a rule to fix this situation. If left unchanged, Smartlist can
open a login dialog on startup before the actual Microsoft Dynamics GP login
window opens.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 217

Dynamic Product Selection

You can open the Dynamic Product Selection window by selecting
Dynamic Product Selection from the Setup section of the GP Power Tools
Area Page or by selecting Administration >> Dynamic Product Selection
from the Options button drop list on the main window. This is an
Advanced Mode feature.

Dynamic Product Selection allows the dynamic selection of different
versions of a window or report to be selected as the window or report is
opened. This can be used to allow access to more than one version of a
window (original, modified, alternate or modified alternate) without
requiring security settings to be changed or logging in as another user.

The Dynamic Product Selection window is used to configure which
windows or reports have Dynamic Product Selection enabled and which
versions of the window or report to offer for selection by the user. The
settings are linked to the Microsoft Dynamics GP Alternate/Modified
Forms and Report ID as used on the User Security window and can also
have additional User and/or Company User Class, Security Role, or
Security Task selection.

The following is a description of the individual fields on the window:

Modified/Alternate ID
This field contains a unique identifier for each Modified/Alternate ID
in the system. The lookup button can be clicked to select from existing
Modified/Alternate IDs.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

218 G P P O W E R T O O L S

While it is possible to have as many Modified/Alternate IDs as you
wish, only those which match an existing Microsoft Dynamics GP
Alternate/Modified Forms and Report ID will be used. To select from
the list of existing Microsoft Dynamics GP Alternate/Modified Forms
and Report IDs, use the lookup button on the right-hand side of the
window.

Note that the Modified/Alternate IDs starting with the prefix character of
tilde (~) are reserved for use by Microsoft Support.

Description
This field contains the description from the matched Microsoft
Dynamics GP Alternate/Modified Forms and Report ID, if it exists.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 219

Resource Type
This drop down list selects whether to setup dynamic product
selection for windows or reports resources.

Only show selected when expanding tree
This checkbox can be used to limit the Resource Tree to only show
windows and reports which have been enabled for Dynamic Product
Selection. This makes it simpler to locate active resources.

Resource Tree
Use the left-hand tree pane to select which resource should have
Dynamic Product Selection enabled. The Users Button can be used to
fine tune the Users and/or Companies User Class, Security Role, or
Security Task the resource is enabled for beyond that they are using
the specified Modified/Alternate ID.

Selection List
Use the right-hand list pane to select which versions of the resource
are to be made available by Dynamic Product Selection.

The order of the choices to be changed using the left hand Top, Up,
Down and Bottom buttons.

You can also fine tune the selections based on User and/or Company,
User Class, Security Role, or Security Task using the User Button.
Once clicked the Enabled for Users window will open, see the section
below for more details.

Dialog mode when selecting product
Controls whether keyboard entry dialog should be used even when
there are only two or three choices which can use a button dialog.
Using the keyboard entry dialog uses one dialog to display a list of
available options and a second dialog to enter the selection desired.

Description of Modified/Alternate Resource
Use this field to enter a description to display to the user rather than
the name of the dictionary.

Short Description used for dialog buttons
Use this option to change the labels used on the dialog buttons rather
than a simple letter of the alphabet. On the keyboard entry dialog, you
can use the number of the selection or type in the short description.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

220 G P P O W E R T O O L S

The following is a description of the additional buttons on the window:

Duplicate Button
Use this button to duplicate the current Modified/Alternate ID to a
new Modified/Alternate ID. This is useful when an existing
Modified/Alternate ID is similar to the new one you want to create.

A new Modified/Alternate ID must be specified in the dialog which
opens.

Users Button
Use this button to specify which users and companies should have the
current resource enabled. Once clicked the Enabled for Users window
will open.

You can view this window by users, by companies or by user classes
and navigate the tree to select the user and company combinations as
required.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 221

If all users are selected on the tree, the tree selections will be cleared and the
mode will change from Selected Users and Companies to All Users and
Companies. If no users are selected on the tree, the mode will change to All
Users and Companies.

The Exclude Selected Users and Companies rather than include them
option allows you to invert the behavior of the window. This is handy
when it is easier to specify the users and companies for whom
dynamic product selection should not be enabled.

Once configured, when a user opens a window or report the
Alternate/Modified Forms and Reports ID being used for the current user
and company matches a Modified/Alternate ID and the resource has
Dynamic Product Selection enabled and has more than one selection
available, a dialog will be displayed and the user can make a selection of
which version of the window or report they wish to open.

If there are three or less options and the button dialog mode is selected,
then a button dialog will be displayed.

If there are more than three options or the keyboard dialog mode is
selected, then two dialogs will be used, the first dialog with a list of
options will be displayed:

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

222 G P P O W E R T O O L S

Then a second dialog is displayed to allow the keyboard entry of the
desired choice.

Note a valid selection must be entered to proceed past this dialog, or you can select
cancel to open the default version as controlled by security settings (displayed
with the asterisk in the first dialog).

Dynamic Product Selection handles checks by third party products of the
security tables to ensure they correctly identify which version of a window
is currently open. This prevents triggers running on the incorrect version
of a window and generating errors.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 223

Website Settings

You can open the Website Settings window by selecting Website Settings
from the Setup section of the GP Power Tools Area Page or by selecting
Administration >> Website Settings from the Options button drop list on
the main window. This is an Advanced Mode feature.

Website Settings allows overriding of the default webpage settings for the
Connect and Intelligent Cloud Insights (GP 2018 R2 or later) homepage
sections. These settings are system wide and achieved without using
Dex.ini settings or Modifier.

The following is a description of the individual fields on the window:

Enable systemwide control of the Homepage Connect Section
website
Mark this checkbox to enable changing of the website URL for the
Connect Homepage section.

Connect Section Website URL
Enter the Website URL to use for the Connect Homepage section.

Enable systemwide control of the Homepage Intelligent Cloud
Insights Section website
Mark this checkbox to enable changing of the website URL for the
Intelligent Cloud Insights Homepage section.

Hide the Homepage Intelligent Cloud Insights website entirely
Mark this checkbox to hide Intelligent Cloud Insights Homepage
section entirely.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

224 G P P O W E R T O O L S

Intelligent Cloud Insights Section Website URL
Enter the Website URL to use for the Intelligent Cloud Insights
Homepage section.

Intelligent Cloud Insights Section Website Title
Enter the Website Title to use for the Intelligent Cloud Insights
Homepage section.

Intelligent Cloud Insights Section Website Description
Enter the Website Description to use for the Intelligent Cloud Insights
Homepage section.

Allow Intelligent Cloud Insights as default for new users
By default, Microsoft Dynamics GP makes Intelligent Cloud Insights
the default view on the homepage for a newly created user. GP Power
Tools changes the default back to the user’s homepage. Use this
checkbox to restore the Microsoft Dynamics GP default behavior.

Update Button
Use this button to set all users to show the user’s homepage rather
than Intelligent Cloud Insights when Microsoft Dynamics GP loads.

Do not apply Website Settings on this workstation
Enabling this checkbox on a workstation uses the
MBS_Debug_DisableWebsiteSettings Dex.ini setting to disable any
website setting changes for the workstation.

For Microsoft Dynamics GP v18.4 or later which removes Intelligent Cloud
Insights, GP Power Tools will allow adding back of a custom website url instead
of repurposing Intelligent Cloud Insights.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 225

Product Version Validation

You can open the Product Version Validation window by selecting
Product Version Validation from the Setup section of the GP Power Tools
Area Page or by selecting Administration >> Product Version Validation
from the Options button drop list on the main window. This is an
Advanced Mode feature.

Product Version Validation serves multiple purposes in the system. It
tracks the product dictionary versions of all products installed on every
workstation or server instance. It uses this information to ensure that the
resource data cached by the Resource Explorer is automatically kept up to
date when a dictionary is installed or updated.

Product Version Validation also keeps track of the latest product
dictionary versions installed on a system and will provide a mismatch
warning dialog when a workstation instance logs in with a different
version or build number. Finally, for some GP Power Tools functions
which require all product dictionaries installed to function correctly, it can
check if any dictionaries are not installed.

The following is a description of the individual fields on the window:

System Versions
These fields can be used to update the version and build details stored
for a product at the system level. Use this if you need to restore the
details back to previous values. Changes must be applied before
changing product.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

226 G P P O W E R T O O L S

Do not check for Version Mismatch
Use this checkbox to stop Product Version Validation display the
warning dialog when a mismatch is found on this workstation. It uses
the MBS_Debug_ProductVersionOverride Dex.ini setting.

Apply Button
Changes to the System Versions fields must be applied using this
button to be saved.

Delete Button
Use this button to remove records for a product no longer installed on
a workstation or remove a product from the system level. If the
product is installed on a workstation instance it will be added back to
that workstation instance and to the system level on next login.

Remove Button
Use this button to remove all records for the selected workstation or
workstation instance. If the workstation logs in again, the records for
that workstation will be added back.

Export Button
This button will allow the result set displayed in the list view to be
exported to a file or directly to an email. The default email settings can
be set up in the Email Settings window.

Export Mode
Use this drop-down list to select the format for the exported file. The
file can be exported as Tab Delimited, Comma Delimited or as a
HTML Table.

If a workstation logs in with a different product dictionary version to the data
stored at the system level, the following mismatch warning dialog will be
displayed. This dialog can be resolved by installing the correct version of the
product on the workstation, or by editing the System Versions details if they are
incorrect.

 C H A P T E R 4 A D M I N I S T R A T O R T O O L S

 G P P O W E R T O O L S 227

If attempting to access a window in GP Power Tools which requires all product
dictionaries installed and a product is not installed, the following missing
warning dialog will be displayed. This dialog can be resolved by installing all the
products on the workstation, or by deleting the product from the system level if
they are no longer being used.

C H A P T E R 4 A D M I N I S T R A T O R T O O L S

228 G P P O W E R T O O L S

Additional Administrator Features

GP Power Tools adds some extra features to help administrators. Below is
a summary of the features:

Security Resource Descriptions
When opening GP Power Tools security related windows, the Security
Resource Descriptions (SY09400) syCurrentResources table is updated to
include resources from any missing or updated dictionaries and for
resources types not updated by core code.

SUPERUSER Security Task and Role
When GP Power Tools updates the Security Resource Descriptions table, it
also creates and maintains a SUPERUSER Security Role and SUPERUSER
Security Task. The SUPERUSER Security Role is designed to be used
instead of the POWERUSER Security Role. Its advantage is that is uses the
security system but grants access to everything instead of bypassing the
security system like POWERUSER.

SUPERUSER Workflow Setup
The Workflow Setup looks for POWERUSER for some features, GP Power
Tools allows the same features to be used by a SUPERUSER. This allows
Workflow Setup to be used without needing to go back to a POWERUSER.

User Company Access Fix
GP Power Tools fixes the issue which can cause an error when changing
User Company access when the settings in SQL Server and Microsoft
Dynamics GP do not match

User Setup Additional Information
GP Power Tools adds a window to the User Setup window to allow for the
storage of additional data against a user. For more information see the
setup options in the Administrator Settings window.

 G P P O W E R T O O L S 229

 Chapter 5: Developer Tools Features

This chapter includes the following sections:

• Runtime Executer
• SQL Executer
• .Net Executer
• Project Setup*
• Automatic Trigger Mode
• Trigger Setup*
• Runtime Execute Setup*
• SQL Execute Setup*
• .Net Execute Setup*
• Snippet Setup*
• Parameter Lists*
• Messages Setup*
• Dynamic Trigger Logging*
• Virtual Fields*
• Additional Developer Features

* Advanced Mode Feature

C H A P T E R 5 D E V E L O P E R T O O L S

230 G P P O W E R T O O L S

Runtime Executer

You can open the Runtime Executer window by selecting Runtime
Executer from the Inquiry section of the GP Power Tools Area Page or by
selecting Scripting >> Runtime Executer from the Options button drop list
on the main window.

The Runtime Executer window can be used to run any Dexterity sanScript
script created with the Runtime Execute Setup window which has been
marked as Published to Executer Window.

Scripts can only be executed from this window and cannot be viewed, edited or
deleted. This window is designed to be used to expose specific scripts to be used by
standard users, without needing to give them access to the Runtime Execute
Setup window. The Long Description is displayed on the window.

The following is a description of the individual fields on the window:

Script ID
This field contains a unique identifier for each Runtime Execute Setup
script in the system. The lookup button can be clicked to select from
existing published script IDs.

Execute Button
Use this button to execute the script.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 231

SQL Executer

You can open the SQL Executer window by selecting SQL Executer from
the Inquiry section of the GP Power Tools Area Page or by selecting
Scripting >> SQL Executer from the Options button drop list on the main
window.

The SQL Executer window can be used to run any Transact SQL
statements created with the SQL Execute Setup window which has been
marked as Published to Executer Window.

Scripts can only be executed from this window and cannot be viewed, edited or
deleted. This window is designed to be used to expose specific scripts to be used by
standard users, without needing to give them access to the SQL Execute Setup
window. The Long Description is displayed on the window.

The following is a description of the individual fields on the window:

Script ID
This field contains a unique identifier for each SQL Execute Setup
script in the system. The lookup button can be clicked to select from
existing published script IDs.

Execute Button
Use this button to execute the script.

Find Button
Use this button to search the results list for the specified search string.
You can select to search All Columns or the current Sort Column and
whether the search should be a Contains search or a Begins With
search.

C H A P T E R 5 D E V E L O P E R T O O L S

232 G P P O W E R T O O L S

Export Button
This button will allow the result set displayed in the list view to be
exported to a file or directly to an email. The default email settings can
be set up in the Email Settings window.

Export Mode
Use this drop-down list to select the format for the exported file. The
file can be exported as Tab Delimited, Comma Delimited or as a
HTML Table.

Gotos Button
Use this button drop-down menu to execute a SQL Goto on the
selected rows in the returned data. You can also right click on the
results list.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 233

.Net Executer

You can open the .Net Executer window by selecting .Net Executer from
the Inquiry section of the GP Power Tools Area Page or by selecting
Scripting >> .Net Executer from the Options button drop list on the main
window.

The .Net Executer window can be used to run any Visual C# or Visual
Basic.Net script created with the .Net Execute Setup window which has
been marked as Published to Executer Window.

Scripts can only be executed from this window and cannot be viewed, edited or
deleted. This window is designed to be used to expose specific scripts to be used by
standard users, without needing to give them access to the .Net Execute Setup
window. The Long Description is displayed on the window.

To be able to execute .Net scripts, the WinthropDC.GpPowerToolsVC.dll and
WinthropDC.GpPowerToolsVB.dll Addins must be installed.

The following is a description of the individual fields on the window:

Script ID
This field contains a unique identifier for each .Net Execute Setup
script in the system. The lookup button can be clicked to select from
existing published script IDs.

Execute Button
Use this button to execute the script.

C H A P T E R 5 D E V E L O P E R T O O L S

234 G P P O W E R T O O L S

Project Setup

You can open the Project Setup window by selecting Project Setup from
the Cards section of the GP Power Tools Area Page or by selecting
Scripting >> Project Setup from the Options button drop list on the main
window. This is an Advanced Mode feature.

The Project Setup window can be used to group together multiple triggers,
scripts and parameter lists into a single development or customization
project which can be easily exported without needing to manually select
the resources on the Configuration Export/Import window.

The supported resources are listed below.

• Trigger Setup triggers
• Runtime Execute Setup scripts
• SQL Execute Setup scripts
• .Net Execute Setup scripts
• Parameter Lists
• Messages
• Snippets
• Form Controls
• Passwords
• Customization Maintenance resources

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 235

The following is a description of the individual fields on the window:

Project ID
This field contains a unique identifier for each Project Setup project in
the system. The lookup button can be clicked to select from existing
project IDs.

The Notes Button can be clicked to enter Release Notes. Use the
Timestamp Button to add a timestamp to the bottom of the release
notes.

Note that the Project IDs starting with the prefix character of tilde (~) are
reserved for use by Microsoft Support.

C H A P T E R 5 D E V E L O P E R T O O L S

236 G P P O W E R T O O L S

Project Information
Click this button to display what resources are using this project.

Project Description
This field contains a description of the project.

Long Description
Use the Project Description expansion button to open the Long
Description window. Use this field for a more detailed description of
the project.

Disabled
This checkbox disables the project by preventing triggers in the project
from starting automatically on startup. It can be used rather than
disabling each trigger individually.

Current Project
This checkbox indicates that this project is the current project and will
be automatically loaded into the window when it is first opened.

Configuration File Path
This is the file name used for exporting. The file should use the
extension .dbg.xml. The path is automatically generated based on the
Project ID, but can be manually changed, if desired.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 237

Export Linked Custom Resources
Use this checkbox to enable the importing and exporting of
Customization Maintenance package files when importing and export
the project.

Product Name
Use the Product Name, Product ID and Open Form fields to add a
default form for the project. This form can be opened quickly by using
the Open Form prompt drill down. Its only function is to provide
quick and convenient navigation to a form for testing purposes.

Product ID
Use the Product Name, Product ID and Open Form fields to add a
default form for the project. This form can be opened quickly by using
the Open Form prompt drill down. Its only function is to provide
quick and convenient navigation to a form for testing purposes.

Open Form
Use the Product Name, Product ID and Open Form fields to add a
default form for the project. This form can be opened quickly by using
the Open Form prompt drill down. Its only function is to provide
quick and convenient navigation to a form for testing purposes.

Transfer User and Company details
This checkbox selects whether the user and company selection for
triggers is exported when the trigger is exported.

Project Component List
This list shows all the components that make up the project. Double
click on any item to open that item in the appropriate window. Use the
checkbox on triggers to manually start or stop triggers.

Right click to perform actions against the selected resources (use control and
shift keys to multi-select). You can Open, Duplicate, Rename or Delete a
resource as well as change settings without opening the resource, such as
Disabling, Automatic Start Status and Minimize vs Full logs

The following is a description of the additional buttons on the window:

Delete Button
Use this button to delete the current project ID. You can select to delete
just the project header or the entire project along with its components
(except Customization Maintenance resources).

A project that is currently linked to triggers, scripts or parameter lists cannot be
deleted. If you attempt to delete a project while it is still in use, the information
dialog shown above will also open to show you where the project is used.

C H A P T E R 5 D E V E L O P E R T O O L S

238 G P P O W E R T O O L S

Duplicate Button
Use this button to duplicate or rename the current project ID. You can
select to duplicate the project header or the entire project or rename
the project. This is useful when an existing project ID is very similar to
the new one you want to create, or you wish to rename a project
without having to update each of its components.

A new project ID must be specified in the dialog which opens.

If you select to duplicate the entire project the following Project Setup
Duplicate Project window will open to allow the selection of the
method used to rename the components of the project.

You can select between Renumber, Rename (preferred), Prefix modes
and also use Manual Entry to make changes, if desired.

Users Button
Use this button to specify which users and companies should have the
current project’s triggers start automatically. This feature works in
conjunction with the Users Button on the Trigger Setup window. Once
clicked the Start Project Triggers Automatically on Login for Users
window will open.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 239

You can view this window by users or by companies and navigate the
tree to select the user and company combinations as required. You can
also select by User Classes, Security Roles, Security Tasks and Security
Modified Alternate IDs.

If all users are selected on the tree, the tree selections will be cleared and the
mode will change from Selected Users and Companies to All Users and
Companies. If no users are selected on the tree, the mode will change to All
Users and Companies. A red visual cue will be displayed if there are user
settings present.

The Exclude Selected Users and Companies rather than include them
option allows you to invert the behavior of the window. This is handy
when it is easier to specify the users and companies for whom the
project triggers should not be activate.

Export Button
This button will export all the settings linked to the current project to
the configuration file path specified.

Import Button
This button will import from the configuration file path specified. You
will have an option to Remove Project objects not being imported so
you can remove objects that are no longer required when importing a
project.

C H A P T E R 5 D E V E L O P E R T O O L S

240 G P P O W E R T O O L S

Start Button
This button will start all triggers linked to the current project, all
automatic start triggers, or the selected triggers in the list. It can also
open the Trigger Status window.

Stop Button
This button will stop all triggers linked to the current project, all
automatic start triggers, or the selected triggers in the list. It can also
open the Trigger Status window.

Add Button
This button will allow you to quickly add new Triggers, Scripts,
Snippets, Parameter Lists and Messages to the current project. It can
also open the Trigger Status window.

To add or remove resources from Customization Maintenance use the
Customization Maintenance Selection window

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 241

Update Triggers/Scripts Button
Use this button to change settings on resources within the project
without needing to open the resources. You can make changes to all
resources or just to the selected resources in the Project Component
List.

Execute Button
This button can be used to execute the currently selected script in the
Project Component List without needing to open the script first.

Open Form or Report Button
This button will attempt to open the form or report associated with the
current selection in the Project Component List.

Reset Path Button
This button will reset the Configuration File Path field back to its
default value for the system. You can then adjust the path as desired.

Redisplay Button
This button will refresh the Project Component List.

The following is a description of the Options menu available:

Save and Continue
Use this menu option to save the current project without clearing the
window. Control-S can be used as a shortcut.

Execute
Use this menu option to save the selected script without needing to
open it first. Control-E can be used as a shortcut.

Export Compatibility Warning
Use this menu option to disable or enable the Export Compatibility
Warning when exporting projects. This warning checks that a project
is compatible with Build 28 or earlier which only allowed IDs of 15
characters and Descriptions of 60 characters. Build 29 or later allows
IDs of 25 characters and Descriptions of 100 characters. This setting is
stored using the MBS_Debug_ExportCompatibilityWarning Dex.ini
file setting.

Find in Scripts
Use this menu option to open the Find in Scripts window. Use this
window to search for the entered string in any script in the current
project or across the entire system.

C H A P T E R 5 D E V E L O P E R T O O L S

242 G P P O W E R T O O L S

Double click on a line to open the window and script editor for that
record. This will then use the Find option on the target window to
locate the desired text within the script.

Debug Expressions
Use this menu option to open the Script Debugger Expressions
window. When the Expressions window is open, the GP Power Tools
Script Debugging Context window will open to allow changing of
Dictionary context.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 243

Debug Watch
Use this menu option to open the Script Debugger Watch window.
When the Watch window is open, the GP Power Tools Script
Debugging Context window will open to allow changing of Dictionary
context.

Debug Table Buffers
Use this menu option to open the Script Debugger Table Buffers
window.

C H A P T E R 5 D E V E L O P E R T O O L S

244 G P P O W E R T O O L S

Automatic Trigger Mode

Automatic Trigger Mode uses the logging options and Dexterity triggers
to log application and SQL activity up to a specific event and exception
condition. GP Power Tools can look for multiple issues.

Introduction
The Automatic Trigger Mode of GP Power Tools came about as a result of
a specific support incident. The Dynamics support team was assisting a
customer with a situation that produced invalid data in a table, but no
cause could be replicated. Looking at the customer’s data it was verified
that there was an incorrect value in the table. No one was able to identify
when the previously correct value in the table was being changed to the
incorrect value. GP Power Tools was used to monitor the table field in
question and log the steps which led up to the field changing to the
incorrect value. It was able to identify the situation and provide the exact
scripts being executed up to the point the exception occurred. This
information allowed the code issue to be identified and fixed.

How to Setup
To use Automatic Trigger Mode, you must create a trigger ID using the
Trigger Setup window for each issue or exception condition being
monitored. For each trigger ID, an event must be identified which can be
used to look for the exception condition. For example, if the exception
condition involves data in a table, the trigger event used could be when
the table in question is saved. If the exception condition involves a field on
a window, the trigger event could be when the field in question is
changed.

After the trigger event is selected, a conditional script is written using
Dexterity sanScript to check whether the exception condition has actually
occurred. Scripts written for this purpose will require the assistance of an
experienced Dexterity developer.

Finally, the actions to perform when the exception condition occurs are
defined. The trigger ID can be marked to start automatically. When the
Start Trigger Automatically on Login checkbox is selected, it is possible to
limit the Trigger ID to only automatically start for specified users and/or
companies as well as a specified date range.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 245

Registration
When Automatic Trigger Mode is started either manually from the GP
Power Tools main window or automatically on login, GP Power Tools
registers Dexterity triggers based on the trigger IDs being activated. Once
the triggers are registered all logging options are activated. GP Power
Tools then waits for one of the triggers to fire.

When manually activating the Automatic Trigger Mode, you can select
whether to activate:

• just the DEFAULT trigger ID only,
• the logging trigger IDs marked to start automatically only,
• all logging trigger IDs in the system (except those marked as

disabled),
• the non-logging trigger IDs marked to start automatically only,
• all non-logging trigger IDs in the system (except those marked as

disabled), or
• all triggers for the selected project. Once selected the Project Lookup

window opens to select a project to start.

Non-logging triggers are triggers that can be registered to perform actions
independently of the normal Automatic Trigger Mode triggers. They will
not activate Automatic Trigger Mode and will not start the system
logging. Non-logging triggers can be used to store system values prior to
other triggers or used to prototype possible changes to fix an issue without
the creation of a Dexterity chunk-based trigger.

C H A P T E R 5 D E V E L O P E R T O O L S

246 G P P O W E R T O O L S

Clicking on the Automatic Trigger Mode hyperlink will open the Trigger
Status window which displays the Dexterity triggers are currently
registered by GP Power Tools. If the trigger needs to store a previous
value for a field, it will also be shown on this window.

You can also open the Trigger Status window by selecting Trigger Status
from the Inquiry section of the GP Power Tools Area Page or by selecting
Scripting >> Trigger Status from the Options button drop list on the main
window.

From the Trigger Status window you can use the Unregister button to
unregister single or multiple triggers of either the logging or non-logging
type. If all logging triggers are disabled, you will be presented with a
dialog providing the options to swap to logging only mode stop logging
entirely.

You can also use the Register button to start logging or non-logging
trigger. This button functions the same as the Turn On Automatic
Debugger Mode button on the previous window.

A report of currently registered triggers can be printed using the print button on
the top right of the Trigger Status window.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 247

The following is a description of the Options menu available:

Customization Maintenance
Use this menu option to open the Customization Maintenance
window. Having the option on this window allows it to be opened on
the web client.

Customization Status
Use this menu option to open the Customization Status window.
Having the option on this window allows it to be opened on the web
client.

C H A P T E R 5 D E V E L O P E R T O O L S

248 G P P O W E R T O O L S

Process Monitor
Use this menu option to open the Process Monitor window. Having
the option on this window allows it to be opened on the web client.
This window will display any background or report writer processes
currently queued up in the Normal Queue. Change to the Timed
Queue to see timed and scheduled processes.

About Dexterity
Use this menu option to open the About Dexterity window. This
window is not normally available inside Microsoft Dynamics GP.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 249

Hidden About Window
Use this menu option to open the Hidden About window. This
window is not normally available inside Microsoft Dynamics GP and
shows the names of original Dexterity and Dynamics development
teams. Click on the heading to change the list of people shown and
click on the background to close the window.

C H A P T E R 5 D E V E L O P E R T O O L S

250 G P P O W E R T O O L S

Triggering
When an event being monitored occurs and the Dexterity trigger is
initiated or “fired” GP Power Tools looks up the trigger ID and runs the
associated script to check if the exception condition has actually happened.

If the issue or exception condition is identified to have occurred by the
associated script, GP Power Tools will log the results and save the log files
as described in the Manual Logging Mode section. GP Power Tools then
restarts the logging and continues to wait for the next trigger to fire.

If the actions to export the table record or the entire table were selected,
the following files will be created:

• Record_<User>_<Company>_<Date>_<Time>.xml

This file will contain the exported table record.

• Table_<User>_<Company>_<Date>_<Time>.xml

This file will contain the exported records for the entire table.

These export files can be found in the folder where GP Power Tools is
storing its data files. The default location is the data subfolder beneath the
Microsoft Dynamics GP application folder. The location can be changed
from the default path using the Pathname location for Debugger Setup
files, exports and logs option on the Dex.ini Settings windows (see section
the previous chapter).

If the action to display a message or desktop alert was selected, a dialog
and/or alert with the display message specified will be shown.

If the exception condition has not occurred, then GP Power Tools resets
and continues to wait for the next trigger to fire.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 251

Log File
All actions by GP Power Tools are logged in the
GPPTools_<User>_<Company>.log file. Below is an example log when
the conditions failed.

Below is an example log when the conditions were met.

C H A P T E R 5 D E V E L O P E R T O O L S

252 G P P O W E R T O O L S

Trigger Setup

You can open the Trigger Setup window by selecting Trigger Setup from
the Cards section of the GP Power Tools Area Page or by selecting
Scripting >> Trigger Setup from the Options button drop list on the main
window. This is an Advanced Mode feature.

The Trigger Setup window is used to define the Dexterity triggers that will
be used to look for the exception conditions.

The window is divided into a header section and four tabs; the Resource
Tab, the Actions Tab, the Script Tab and the Options Tab.

The system will always have a trigger ID named DEFAULT. If this trigger ID is
deleted, it will be added back automatically as a blank trigger ID. The use of this
trigger ID is optional.

When using the browse buttons on this window when the sort by drop
down list is set to by Project ID, there will be a soft limit at the first and
last record within a project. Clicking the browse button a second time will
move past the soft limit.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 253

Below is a description of the individual header fields on the window:

Trigger ID
This field contains a unique identifier for each trigger in the system.
The lookup button can be clicked to select from existing trigger IDs.
The lookup will be filtered to the current project if the trigger belongs
to a project.

The Notes Button can be clicked to enter Release Notes. Use the
Timestamp Button to add a timestamp to the bottom of the release
notes.

Note that the Trigger IDs starting with the prefix character of tilde (~) are
reserved for use by Microsoft Support.

C H A P T E R 5 D E V E L O P E R T O O L S

254 G P P O W E R T O O L S

Trigger Information
Click this button to display what resources are using this trigger.

Trigger Description
This field contains a description for the trigger.

Long Description
Use the Trigger Description expansion button to open the Long
Description window. Use this field for a more detailed description of
the trigger.

Trigger Type
This drop-down list specifies the type of trigger being defined. The
following objects can be selected.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 255

• Table
• Table restricted to Form
• Procedure
• Function
• Focus Event
• Focus Event with Table
• Warning Dialog
• Timed Event
• Form Level Menu
• Field Context Menu
• Login/Logout Event
• Scheduled Event
• Application Level Menu

Trigger Event

This drop-down list specifies the event for the selected object. The
following events can be selected depending on the trigger type
selected:

• Table
Save Record
Delete Record
Read Record

• Table restricted to Form
Save Record
Delete Record
Read Record

• Procedure
Global Level
Form Level
Global Level with Parameters
Form Level with Parameters

• Function
Global Level
Form Level
Global Level with Parameters
Form Level with Parameters

• Focus Event
Form Pre
Form Post
Window Pre
Window Post
Window Activate
Scroll Fill
Scroll Pre
Scroll Change
Scroll Post
Scroll Insert
Scroll Delete
Field Pre
Field Change
Field Post
Field Value Changed
Modal Dialog
Context Menu

• Focus Event with Table

C H A P T E R 5 D E V E L O P E R T O O L S

256 G P P O W E R T O O L S

Form Pre
Form Post
Window Pre
Window Post
Window Print
Window Activate
Scroll Fill
Scroll Pre
Scroll Change
Scroll Post
Scroll Insert
Scroll Delete
Field Pre
Field Change
Field Post
Field Changed
Modal Dialog
Context Menu

• Warning Dialog
Warning Dialog

• Timed Event
Every 1 Minute
Every 5 Minutes
Every 10 Minutes
Every 15 Minutes
Every 30 Minutes
Every 60 Minutes

• Form Level Menu
Form Level

• Field Context Menu
Field Context

• Login/Logout Event
Login Event
Logout Event
Starting Triggers

• Scheduled Event
Daily Event
Weekly Event
Monthly Event

• Application Level Menu
Add Menu to Top
Add Menu to Bottom
Add Menu Below Entry

While GP Power Tools can trigger against global and form level procedures
and functions, it is unable to obtain the parameter lists for those procedures
and functions.

To use the Application Level Menu Trigger Type, the Visual Studio
Integration Toolkit product must be installed.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 257

Trigger Attach
This drop-down list specifies when the code for the Dexterity trigger is
run when the selected event for the selected object occurs. The
following attach modes can be selected depending on the trigger type
selected:

• Table
After Table Event

• Table restricted to Form
After Table Event

• Procedure
Before Original
After Original

• Function
Before Original
After Original

• Focus Event
Before Original
After Original
After Original Delayed

• Focus Event with Table
Before Original
After Original

• Warning Dialog
Before Original
After Original

• Timed Event
After Timed Event

• Form Level Menu
After Menu Selected

• Field Context Menu
After Menu Selected

• Login/Logout Event or Starting Triggers
After Login Event
After Login Event (Delayed)
After Login Event (Background)
After Login Event (After Background)
Before Logout Event
After Starting Triggers

• Scheduled Event
After Logging In
After Time XX:XX
After Login on DOW
After Login on Day X

• Application Level Menu
After Menu Selected

When using table trigger type, it is possible to trigger only after a successful
table event. This means this option cannot be used to capture a failed save,
delete, or read event.

C H A P T E R 5 D E V E L O P E R T O O L S

258 G P P O W E R T O O L S

Disabled
When this checkbox is marked, the current trigger is disabled and will
never be activated.

Start Trigger Automatically on Login
When this checkbox is marked, the current trigger will be activated
automatically after logging into Microsoft Dynamics GP. Use the
Users button to specify the individual user and companies to limit for
whom the trigger is used.

Do not activate Logging Mode
When this checkbox is marked, the trigger will not start logging and
will not activate the Automatic Trigger Mode. It allows a trigger to be
registered and used without the overhead of maintaining the log files.

Non-logging triggers can be started automatically on login or started
manually from the Automatic Trigger Mode Turn On button. To stop a non-
logging trigger, use the Unregister button on the Trigger Status window.

Minimize Log Entries
When using a Non-logging trigger, this option can be enabled to
prevent the trigger generating entries in the
GPPTools_<User>_<Company>.log file unless an error occurs.

The following is a description of the additional buttons on the window:

Duplicate Button
Use this button to duplicate or rename the current trigger ID and
create a new trigger ID. This is useful when an existing trigger ID is
very similar to the new one you want to create.

A new trigger ID must be specified in the dialog which opens.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 259

Users Button
Use this button to specify which users and companies should have the
current trigger start automatically. Once clicked the Start Trigger
Automatically on Login for Users window will open.

You can view this window by users or by companies and navigate the
tree to select the user and company combinations as required. You can
also select by User Classes, Security Roles, Security Tasks and Security
Modified Alternate IDs.

If all users are selected on the tree, the tree selections will be cleared and the
mode will change from Selected Users and Companies to All Users and
Companies. If no users are selected on the tree, the mode will change to All
Users and Companies. A red visual cue will be displayed if there are user
settings present.

The Exclude Selected Users and Companies rather than include them
option allows you to invert the behavior of the window. This is handy
when it is easier to specify the users and companies for whom the
trigger should not be activate.

C H A P T E R 5 D E V E L O P E R T O O L S

260 G P P O W E R T O O L S

Administration Button
Use this button to administer multiple Automatic Trigger Mode
Trigger IDs at the same time. Once clicked the Trigger Administration
window will open.

When the Trigger Administration window is opened, the current Trigger ID
is saved automatically. The Trigger Administration window is modal and
must be closed before continuing to use other windows.

The window shows the current status of the Trigger IDs in the system.
Triggers can be Enabled or Disabled, have their start mode changed
between Manual and Automatic, or be deleted in bulk from this
window.

To make changes, select the Trigger IDs (use control and shift keys to
multi-select) and use the Change State, Change Start Mode, and Mark
To Delete Buttons.

The selected changes will be made when OK is clicked. Clicking
Cancel will close the window without applying any pending changes.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 261

Resource Tab
The Resource tab contains the definition of the resource to apply the
trigger against.

The following is a description of the individual resource selection fields on
the tab. The actual fields available depend on the settings for Trigger Type
and Trigger Event fields. The lookup button can be used to open the Form
Explorer or the Table Explorer to select the required resource:

Product Name
This drop-down list contains a list of products currently installed on
the Microsoft Dynamics GP workstation.

Modified
This checkbox can be used to force the trigger register in the context of
the modified dictionary. This allows the trigger to reference Modifier
added local fields.

To be able to register triggers against modified dictionaries, the
WinthropDC.GpPowerToolsVB.dll Addins must be installed.

Form Name
This field contains the technical name for the form selected.

Table Name
This field contains the technical name for the table selected.

C H A P T E R 5 D E V E L O P E R T O O L S

262 G P P O W E R T O O L S

Window Name
This field contains the technical name for the window selected.

Field Name
This field contains the technical name for the field selected.

Procedure Name
This field contains the technical name for the procedure selected.

Function Name
This field contains the technical name for the function selected.

Menu Entry
This field contains the description to be displayed on the Form Menu
created by this trigger.

Accelerator Key
This field contains an optional accelerator shortcut key (used with
Control) for the menu entry.

The Resource tab changes when the Trigger Type of Application Level
Menu is selected so you can enter the one or two sets of information need
to specify the menu commands.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 263

Actions Tab
The Actions tab contains the actions to perform when the trigger has fired.

The following is a description of the individual action fields on the tab.
These actions will be processed when the trigger fires and the conditional
script returns true or if the Perform actions when fired regardless of
condition checkbox is selected.

Perform actions when fired regardless of condition
Check this checkbox when you want the actions to be processed when
the trigger is fired regardless of whether the conditional script returns
true.

Perform actions when fired and condition not met
Check this checkbox when you want the actions to be processed when
the trigger is fired and the conditional script returns false.

Display Message to screen using system dialog
Select this checkbox if you want the message displayed to the screen in
a system dialog box.

Display Message to screen using desktop alert
Select this checkbox if you want the message displayed to the screen in
a desktop alert.

C H A P T E R 5 D E V E L O P E R T O O L S

264 G P P O W E R T O O L S

Dialog Message
This field contains the message which will be logged and displayed if
the Display Message checkbox is selected. When the Field Name is
specified, the message can contain the %1 placeholder which will be
substituted with the field value when the message is displayed.

The message can be programmatically overridden by using the
MBS_Triggerl_Update_Dialog Helper Function the Trigger handler
script.

Display Message to screen using simple system dialog instead of
text box dialog
Select this checkbox if you want the message displayed to the screen in
a simple system dialog instead of a text box dialog.

Dialog/Alert Type
Use this drop-down list to select between Information, Warning
(default), Error and Debug dialogs and desktop alerts. Debug dialogs
and desktop alerts are only shown when the Debug menu is enabled
and Show Debug Messages is enabled. These Debug settings can be
changed on the Dex.ini Settings window.

Message ID
Use this field to define a Message ID to be used instead of the default
Dialog Message. Messages have the advantage of only being defined
once and can automatically change depending on the language of the
system. To setup Messages use the Messages Setup window.

Send Email using Administrator Email or Email Address below
When this checkbox is selected, an email with the log details of the
trigger will be sent to the Administrator Email address as setup in the
Administrator Settings window, or to the specified Email Address.

Include zipped log files
Check this option to include the captured log files in a zipped archive
file in the email sent.

If less than X MB
Specify the maximum allowed size for the zipped archive file.

Email Address
This field can be used to specify an email address to use instead of the
default Administrator Email.

The email address can be programmatically overridden by using the
MBS_Triggerl_Update_Email Helper Function the Trigger handler
script.

Export Current Table Record to XML
When this checkbox is selected, the current table buffer contents will
be exported as an XML file. This action is only valid for Table triggers.

Export Entire Table to XML restricted by Where Clause
When this checkbox is selected, the entire table contents will be
exported as an XML file. This action is only valid for Table triggers. A
SQL Where Clause can be specified to restrict the records exported.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 265

Optional Where Clause
This field can be used with the Export Entire Table option to define a
SQL Where Clause to restrict the records exported to XML. This field
is only valid for Table triggers.

Issue Reject Record
When this checkbox is selected, a reject record command will be
issued to prevent the current record being shown in a scrolling
window. This action is only valid for Non-logging Focus Event
triggers attached to the Scroll Fill Event.

Pull Window Focus before script
When this checkbox is selected, the focus will be pulled from the
window before the trigger script is executed. This will ensure that any
pending change or post scripts are executed and any fields will have
the correct changed value.

Open Window Hidden
When this checkbox is selected, the window will open hidden (off
display) and remain so until it is closed. This action is only valid for
Non-logging Focus Event triggers attached to the Window Pre Event.

Issue Reject Script
When this checkbox is selected, a reject script command will be issued
to abort the original code from executing. This action is only valid for
Non-logging Focus Event triggers running before the original code.

Keep Focus on Field
When this checkbox is selected, the focus will be kept on the current
field. This action is only valid for Non-logging Focus Event triggers
running before the original code when the Reject Script option is used.

Restore Field Value
When this checkbox is selected, the original value of the current field
will be restored. This action is only valid for Non-logging Focus Event
triggers running before the original code when the Reject Script option
is used.

Capture Screenshots to default logging folder or email
When this checkbox is selected, the ScreenShot utility will be used to
capture screenshots of all open windows and either save them to the
logging folder or email them.

Email Screenshots using Administrator Email or Email Address
below
When this checkbox is selected, an email with the captured
screenshots will be sent to the Administrator Email address as setup in
the Administrator Settings window, or to the specified Email Address.

Include Dex.ini Settings File
This checkbox tells the ScreenShot utility whether to include the
Global level Dex.ini settings file as an attachment for the email. The
default setting for this checkbox can be set up in the Administrator
Settings window.

C H A P T E R 5 D E V E L O P E R T O O L S

266 G P P O W E R T O O L S

Include User Dex.ini Settings File
This checkbox tells the ScreenShot utility whether to include the User
level Dex.ini settings file as an attachment for the email. The default
setting for this checkbox can be set up in the Administrator Settings
window.

Include Current Launch File
This checkbox tells the ScreenShot utility whether to include the
launch file, usually Dynamics.set, as an attachment for the email. The
default setting for this checkbox can be set up in the Administrator
Settings window.

Include info for all databases
This checkbox tells the ScreenShot utility whether to include
information for all databases or just the system database and current
company database in the System Status report. Not including
information for all databases gives better performance on systems
with many companies. The default setting for this checkbox can be set
up in the Administrator Settings window.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 267

Script Tab
The Script tab contains the Conditional script to be executed when the
trigger fires.

The following is a description of the individual script fields on the tab.

Script Context
This drop-down list contains a list of products currently installed on
the Microsoft Dynamics GP workstation. It is used to select the
dictionary context that the conditional script will be executed in. The
script context is usually the same as the dictionary ID, but can be
changed if the script needs to be executed in a different dictionary to
where the trigger is registered.

Modified
This checkbox can be used to force the script to execute in the context
of the modified dictionary. This allows the script to reference Modifier
added local fields. Changing this setting will automatically update the
script to alter the parameter passing method used.

To be able to execute scripts against modified dictionaries, the
WinthropDC.GpPowerToolsVC.dll Addins must be installed.

C H A P T E R 5 D E V E L O P E R T O O L S

268 G P P O W E R T O O L S

Check Form Security
This checkbox can be control when the script is executed. If selected,
the script will only run if version of the form opened matches the
Script Context product and Modified checkbox.

Clipboard Button
This expansion button opens the Trigger Script Clipboard window.
This window can be used as temporary storage when editing scripts to
allow for cutting and pasting between scripts. Use the Copy Script
Button if you wish to copy the current script to the clipboard window
and the Clear Script Button to clear the clipboard window contents.

When changing the trigger settings or trigger resource, you will be asked if
you want to copy to the clipboard before the script is reset. You can then copy
back the portions of the script you want to keep. The clipboard window will
close with the Trigger Setup window.

Conditional Script
This text field contains the script to be executed when the trigger fires.
The script will be populated with a default script when the trigger
type, trigger event and resource information are selected. The script
will have the required parameters, including a boolean
OUT_Condition. The script can be used to check for the exception
condition being targeted and then set OUT_Condition to true if the
condition has occurred. The script is checked for syntax errors when
saved.

Using the Helper Functions (see below), a script created in the Runtime
Execute Setup window, the SQL Execute Setup window or the .Net Execute
Setup window can be loaded and executed from within a conditional script of
a trigger.

The following is a description of the additional buttons on the tab:

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 269

Help Button
Use this button (highlighted on screenshot) to open the full Dexterity
Help file.

Default Button
Use this button to reset the Message and Conditional Script fields to
the default settings based on the trigger and resource settings.

Parameters Button
Use this button to insert a Parameter Placeholder into the script for the
Parameter List selected with the Parameter ID on the Options tab.

C H A P T E R 5 D E V E L O P E R T O O L S

270 G P P O W E R T O O L S

Insert Button
Use this button to insert a Dexterity sanScript code construct,
Parameter Placeholders, .Net Assemblies or code Snippets. The
available constructs are shown below:

If Placeholder for Substitution is selected, the Placeholders window
will open.

If Import .Net Assembly is selected, the .Net Assemblies window will
open.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 271

If Snippets is selected, the snippets available for the current language
are displayed in their groups as specified on the Snippet Setup
window.

Helper Button
Use this button to open the Insert Helper Function window. The
appropriate code for the selected helper function will be inserted into
the script.

Helper functions can be used to read or write a window or table field
in any window or table from any loaded dictionary. When setting a
window field you can select whether to execute the field’s change
script. When setting a table field you can select whether adding a new
record is allowed.

The table-based help functions currently support up to four key fields.
The individual helper functions are covered in more detail in a later
chapter.

Names Button
Use this button to insert a dictionary resource into the script.

Once Forms, Windows & Fields is selected the Form Explorer window
will open.

C H A P T E R 5 D E V E L O P E R T O O L S

272 G P P O W E R T O O L S

To insert a form name or window name, select the resource in the right-hand
pane and click OK. If no resources are selected on the right-hand pane, the
currently selected resource in the left-hand pane will be used when OK is
clicked. Multi-select is available to insert multiple resources at one time.

If a Modified field is selected and the Modified checkbox is not
selected, the following dialog will be displayed to suggest activating
Modified mode now.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 273

Once Tables & Fields is selected the Table Explorer window will open.

To insert a table name, select the resource in the right-hand pane and click
OK. If no resources are selected on the right-hand pane, the currently
selected resource in the left-hand pane will be used when OK is clicked.
Multi-select is available to insert multiple resources at one time.

Once Reports is selected the Report Explorer window will open.

To insert a report name, select the resource in the right-hand pane and click
OK.

C H A P T E R 5 D E V E L O P E R T O O L S

274 G P P O W E R T O O L S

Once Procedures & Functions is selected the Script Explorer window
will open.

To insert a procedure or function name, select the resource in the right-hand
pane and click OK.

Selecting Procedures & Functions with Parameters will allow for the full call
syntax to be inserted into the script with the parameter list (if available).

Once Global Variables is selected the Global Variable Explorer
window will open.

To insert a global variable name, select the resource in the right-hand pane
and click OK.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 275

Once Constants or Constants (value) is selected the Constant Explorer
window will open.

To insert a Constant name or Constant value, select the resource in the right-
hand pane and click OK.

Once Dictionary Fields is selected the Field Explorer window will
open.

To insert a Field name, select the resource in the right-hand pane and click
OK.

C H A P T E R 5 D E V E L O P E R T O O L S

276 G P P O W E R T O O L S

The following is a description of the Script menu available for the tab:

Find …
Use this menu option to open the script editor Find window to search
for text. Control-F can be used as a shortcut.

Find Next
Use this menu option to find the next occurrence. Control-G can be
used as a shortcut.

Replace …
Use this menu option to open the script editor Replace window to
search and replace text. Control-R can be used as a shortcut.

Replace and Find Next
Use this menu option to replace and find the next occurrence. Control-
B can be used as a shortcut.

Goto Line …
Use this menu option to open the script editor Goto Line window to
jump to a specified line. Control-N can be used as a shortcut.

Save and Continue
Use this menu option to save the current trigger without clearing the
window. Control-S can be used as a shortcut.

Check Syntax
Use this menu option to check the syntax of the current script. Any
errors will be displayed in a dialog window. Control-K can be used as
a shortcut.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 277

Options
Use this menu option to open the Options window to allow the syntax
highlighting colors, font style, and size to be changed. Control-O can
be used as a shortcut.

Generate Dexterity Pass Through
Use this menu option to generate Dexterity pass through sanScript
code from a trigger script including the trigger registration that can be
copied and pasted into a Dexterity development dictionary. Control-D
can be used as a shortcut.

C H A P T E R 5 D E V E L O P E R T O O L S

278 G P P O W E R T O O L S

Names Button Uses Clipboard
Use this menu option to control whether the Names Button returns
directly to the script (default) or to the clipboard.

To be able to use the clipboard, the WinthropDC.GpPowerToolsVB.dll
Addins must be installed.

Debug Expressions
Use this menu option to open the Script Debugger Expressions
window. When the Expressions window is open, the GP Power Tools
Script Debugging Context window will open to allow changing of
Dictionary context.

Debug Watch
Use this menu option to open the Script Debugger Watch window.
When the Watch window is open, the GP Power Tools Script
Debugging Context window will open to allow changing of Dictionary
context.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 279

Debug Table Buffers
Use this menu option to open the Script Debugger Table Buffers
window.

C H A P T E R 5 D E V E L O P E R T O O L S

280 G P P O W E R T O O L S

Options Tab
The Options tab contains optional settings which change the behavior of
the trigger.

The following is a description of the individual script fields on the tab.

Project ID
Use this field to add the current trigger to a development project.

Parameter ID
For Non Logging Triggers using a Focus Event, Add Form Menu or
Add Field Context Menu Type you can specify a Parameter List to be
used with the script.

Start Date
You can specify a Start Date to restrict the dates that a trigger will
automatically start.

End Date
You can specify an End Date to restrict the dates that a trigger will
automatically start.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 281

If the Start Date and the End Date are the same, the trigger will only be
active for a single day. If the End Date is before the Start Date, then the
trigger will be inactive during the date range. The status field will show the
behavior based on the selected dates. If a Start Date is not specified, the
trigger will be active up to the End Date. If an End Date is not specified, the
trigger will be active from the Start Date.

Enable in Web Client
This checkbox tells GP Power Tools that this trigger should be enabled
for the Microsoft Dynamics GP Web Client .

When importing Triggers that have been exported from a build earlier than
Build 31, you will need to edit the trigger and select this option manually if
you want the trigger active in the Microsoft Dynamics GP Web Client.

Enable in Service Mode
This checkbox tells GP Power Tools that this trigger should be enabled
when Microsoft Dynamics GP is being executed in Service Mode (for
Service Based Architecture) or when in Dynamics Process Server
(DPS) mode.

Execution Mode
For Scheduled Event Trigger Type only: Use this drop-down list to
select how often the scheduled event should execute. Select from every
time, once per system, once per user, once per company or once per
user/company combination.

Do not run missed event on next login
For Scheduled Event Trigger Type only: By default, if a scheduled
event is missed because Microsoft Dynamics GP was not logged in at
the time it was scheduled, it will execute on the next login. Select this
checkbox to skip the missed event and just wait for the next scheduled
time.

Error Handling
For Scheduled Event Trigger Type only: Use this drop-down list to
select how error are handled. You can select not to retry, to retry once
or up to 5 times when the trigger is incomplete (usually caused by a
script error), or retry once or up to 5 times when the trigger completed
but the conditional script returned false.

Number of execution logs to keep
For Scheduled Event Trigger Type only: The system keeps logs each
time a scheduled event is triggered, use this field to specify how much
history should be kept. Drilling down on the field will open the
Trigger Setup Scheduled Log window:

C H A P T E R 5 D E V E L O P E R T O O L S

282 G P P O W E R T O O L S

Capture SQL Log
You can select which of the logging modes to enable, this option
enables the SQL Logging when this trigger is active. This option is not
valid for Non-logging triggers.

Capture SQL Profile Trace
You can select which of the logging modes to enable, this option
enables the SQL Profile Tracing when this trigger is active. This option
is not valid for Non-logging triggers.

SQL Profile Tracing is not enabled until it has been setup using the SQL
Profile Trace Settings window under the Administrator Settings.

SQL Profile Trace Mode
When using SQL Profile Tracing, you can use this option to select the
type of SQL Profile Trace created. You can select between Small,
Medium, Large and Performance. The Other mode can be used in
conjunction with a customized MBS_SQL_Tracing_API_5 stored
procedure in the DYNAMICS database. This option is not valid for
Non-logging triggers.

Capture Dexterity Script Log
You can select which of the logging modes to enable, this option
enables the Dexterity Script Logging when this trigger is active. This
option is not valid for Non-logging triggers.

Capture Dexterity Script Profile
You can select which of the logging modes to enable, this option
enables the Dexterity Script Profiling when this trigger is active. This
option is not valid for Non-logging triggers.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 283

Capture Macro Recording
You can select which of the logging modes to enable, this option
enables the Macro Recording when this trigger is active. This option is
not valid for Non-logging triggers.

Macro Recording can only work when a single instance of Microsoft
Dynamics GP is running on a workstation, or if multiple instances are
running, Macro Recording will only work on the first instance launched.

Only restart selected logs when trigger fires
Using this checkbox, you can control which logging modes are
restarted when the trigger fires. By default, all active logging modes
are restarted each time a trigger fires. If this checkbox is enabled, only
the logging modes selected for this trigger will be restarted when this
trigger fires. This option is not valid for Non-logging triggers.

Allow Trigger Recursion
This checkbox is used to control whether trigger recursion is allowed.
It is disabled by default as it can cause infinite loops or crashing. If you
try to enable recursion you will receive the following warning. Trigger
Recursion can occur when the trigger script performs an action which
can fire the same trigger again. For example: a table save trigger,
making a change to a table and saving the record again.

Stop Trigger after Condition met
Using this checkbox, you can specify that a trigger should only be
used once per session. When the Trigger fires and the condition is met,
the trigger will be stopped until next login or manual restart.

Disable trigger after Condition met
Using this checkbox, you can specify that a trigger should only be
used once. When the trigger fires and the condition is met, the trigger
will be disabled preventing it from starting until it is re-enabled.

Start Trigger Temporarily Disabled
Using this checkbox, you can specify that a trigger should be
temporarily disabled immediately after it is registered. Use the
MBS_Trigger_EnableSingle and the MBS_Trigger_DisableSingle
Helper Function to enable and disable triggers when desired.

Temporarily Disable Trigger after
Use this drop-down list to temporarily disable a trigger again
automatically after it has been executed.

C H A P T E R 5 D E V E L O P E R T O O L S

284 G P P O W E R T O O L S

Restriction of Scope
GP Power Tools has a restriction which must be taken into account when
using the Automatic Trigger Mode.

When using a table trigger type, GP Power Tools uses a Dexterity database
trigger. A Dexterity database trigger is only capable of tracking changes
made to the tables using Dexterity commands.

Changes made to tables using tools or applications other than Dexterity will not
be picked up by GP Power Tools. This can include table changes made directly by
SQL Query Analyzer, pass-through SQL commands, SQL stored procedures,
SQL triggers, or updates from eConnect, Integration Manager’s SQL Optimized
or Microsoft Dynamics GP eConnect adapters, ADO (ActiveX Data Objects)
from VBA (Visual Basic for Applications) or any other external application.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 285

Runtime Execute Setup

You can open the Runtime Execute Setup window by selecting Runtime
Execute Setup from the Cards section of the GP Power Tools Area Page or
by selecting Scripting >> Runtime Execute Setup from the Options button
drop list on the main window. This is an Advanced Mode feature.

The Runtime Execute Setup window can be used to run any Dexterity
sanScript code without requiring the Dexterity development environment.
Scripts written in this window can be used to manipulate tables using
Dexterity commands or to call existing functions and procedures in any
dictionary.

Script IDs created in this window can be loaded and executed from an
Trigger Setup trigger, another Runtime Execute Setup script or a .Net
Execute Setup script. This allows code re-use in a similar fashion to having
multiple procedure calls as well as mixing of languages.

When using the browse buttons on this window when the sort by drop
down list is set to by Project ID, there will be a soft limit at the first and
last record within a project. Clicking the browse button a second time will
move past the soft limit.

C H A P T E R 5 D E V E L O P E R T O O L S

286 G P P O W E R T O O L S

The following is a description of the individual fields on the window:

Script ID
This field contains a unique identifier for each Runtime Execute Setup
script in the system. The lookup button can be clicked to select from
existing script IDs. The lookup will be filtered to the current project if
the script belongs to a project.

The Notes Button can be clicked to enter Release Notes. Use the
Timestamp Button to add a timestamp to the bottom of the release
notes.

Note that the Script IDs starting with the prefix character of tilde (~) are
reserved for use by Microsoft Support.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 287

Runtime Execute Information
Click this button to display what resources are using this script.

Script Name
This field contains a description of the script.

Long Description
Use the Script Name expansion button to open the Long Description
window. Use this field for a more detailed description of the script.
The Long Description is displayed on the Runtime Executer window.

Script Purpose
This drop-down list can be used to specify a custom script purpose for
the script. Changing the script purpose will replace the script with the
template code needed. Purposes include using the script for Report
Writer functions (as described in chapter 7), using the script for
Service Enabled Procedures, using the script to register custom
SmartList Builder Gotos, using the script for handling SQL Gotos,
using the script for handling URL Drill Backs, and using the scripts for
registering and handling of Visual Studio Integration Toolkit Custom
Forms.

C H A P T E R 5 D E V E L O P E R T O O L S

288 G P P O W E R T O O L S

URL Drill Backs allow external applications to all custom scripts in
Microsoft Dynamics GP. They are called with a URL in the format below:

dgpp://dgpb/?Db=<Instance>&Srv=<Server>&Cmp=<DBName>&Prod=5
261&Act=SCRIPT&Func=RuntimeExecute&ID=<ScriptID>&Param=<Pa
rameterList>.

Published to Executer Window
This checkbox indicates if the current script can be accessed from the
read only Runtime Executer window.

Minimize Log Entries
This option can be enabled to prevent the script generating entries in
the GPPTools_<User>_<Company>.log file unless an error occurs.

Script Purpose Disabled
This option can be used to disable the script when a Script Purpose is
in use.

Project ID
Use this field to add the current script to a development project.

Parameter ID
Use this field to specify a Parameter List to be used with the script.

Execute Dexterity SanScript code in the context of Product
This drop-down list contains a list of products currently installed on
the Microsoft Dynamics GP workstation.

Modified
This checkbox can be used to force the script to execute in the context
of the modified dictionary. This allows the script to reference Modifier
added local fields.

To be able to execute scripts against modified dictionaries, the
WinthropDC.GpPowerToolsVC.dll Addins must be installed.

Clipboard Button
This expansion button opens the Runtime Execute Script Clipboard
window. This window can be used as temporary storage when editing
scripts to allow for cutting and pasting between scripts. Use the Copy
Script Button if you wish to copy the current script to the clipboard
window and the Clear Script Button to clear the clipboard window
contents.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 289

When changing the script purpose, you will be asked if you want to copy to
the clipboard before the script is reset. You can then copy back the portions of
the script you want to keep. The clipboard window will close with the
Runtime Execute Setup window.

Script
This text field contains the script to be executed. It cannot have any
parameters. The script runs as though it is a global procedure in the
context of the dictionary specified in the drop-down list. The script is
checked for syntax errors when saved.

Runtime Execute Setup can be used to manipulate data in tables when complex
business logic is required. In this situation writing the equivalent code in
Transact SQL can be difficult. You could loop through a range of records in table
and conditionally make different changes depending on the data in the records.
For example, re-formatting phone numbers in the Customer Master table to
different formats depending on whether they are domestic, international or
mobile/cell numbers.

C H A P T E R 5 D E V E L O P E R T O O L S

290 G P P O W E R T O O L S

The following is a description of the additional buttons on the window:

Help Button
Use this button (highlighted on screenshot) to open the full Dexterity
Help file.

Parameters Button
Use this button to insert a Parameter Placeholder into the script for the
Parameter List selected with the Parameter ID. See the section under
Trigger Setup for more information.

Insert Button
Use this button to insert a Dexterity sanScript code construct,
Parameter Placeholders, .Net Assemblies or code Snippets. See the
section under Trigger Setup for more information.

Helper Button
Use this button to open the Insert Helper Function window and insert
a helper function into the script. See the section under Trigger Setup
for more information.

Names Button
Use this button to insert a dictionary resource into the script. See the
section under Trigger Setup for more information.

Execute Button
Use this button to execute the script in the context of the dictionary
specified. Any compile errors will be shown in the status pane below
the script. Execution errors will cause an Exception Error Dialog to
open.

If a selection of the script is currently highlighted, you can decide to execute
the highlighted section or the entire script.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 291

Duplicate Button
Use this button to duplicate or rename the current script ID to a new
script ID. This is useful when an existing script ID is very similar to
the new one you want to create.

A new script ID must be specified in the dialog which opens.

Users Button
Use this button to specify which users and companies the script
should be published to. Once clicked Publish Script for Users window
will open.

You can view this window by users or by companies and navigate the
tree to select the user and company combinations as required. You can
also select by User Classes, Security Roles, Security Tasks and Security
Modified Alternate IDs.

If all users are selected on the tree, the tree selections will be cleared and the
mode will change from Selected Users and Companies to All Users and
Companies. If no users are selected on the tree, the mode will change to All
Users and Companies. A red visual cue will be displayed if there are user
settings present.

C H A P T E R 5 D E V E L O P E R T O O L S

292 G P P O W E R T O O L S

The Exclude Selected Users and Companies rather than include them
option allows you to invert the behavior of the window. This is handy
when it is easier to specify the users and companies for whom the
script should not be published to.

The following is a description of the Script menu available for the
window:

Find …
Use this menu option to open the script editor Find window to search
for text. Control-F can be used as a shortcut.

Find Next
Use this menu option to find the next occurrence. Control-G can be
used as a shortcut.

Replace …
Use this menu option to open the script editor Replace window to
search and replace text. Control-R can be used as a shortcut.

Replace and Find Next
Use this menu option to replace and find the next occurrence. Control-
B can be used as a shortcut.

Goto Line …
Use this menu option to open the script editor Goto Line window to
jump to a specified line. Control-N can be used as a shortcut.

Save and Continue
Use this menu option to save the current script without clearing the
window. Control-S can be used as a shortcut.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 293

Check Syntax
Use this menu option to check the syntax of the current script. Any
errors will be displayed in a dialog window. Control-K can be used as
a shortcut.

Options
Use this menu option to open the Options window to allow the syntax
highlighting colors, font style, and size to be changed. Control-O can
be used as a shortcut.

Execute
Use this menu option to execute the script. Control-E can be used as a
shortcut.

C H A P T E R 5 D E V E L O P E R T O O L S

294 G P P O W E R T O O L S

Generate Dexterity Pass Through
Use this menu option to generate Dexterity pass through sanScript
code from a prototype script that can be copied and pasted into a
Dexterity development dictionary. Control-D can be used as a
shortcut.

Changing the Script Language to Visual C# provides the C# code that
can be pasted into a Visual Studio project.

Changing the Script Language to Visual Basic .Net provides the VB
code that can be pasted into a Visual Studio project.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 295

Names Button Uses Clipboard
Use this menu option to control whether the Names Button returns
directly to the script (default) or to the clipboard.

To be able to use the clipboard, the WinthropDC.GpPowerToolsVB.dll
Addins must be installed.

Debug Expressions
Use this menu option to open the Script Debugger Expressions
window. When the Expressions window is open, the GP Power Tools
Script Debugging Context window will open to allow changing of
Dictionary context.

C H A P T E R 5 D E V E L O P E R T O O L S

296 G P P O W E R T O O L S

Debug Watch
Use this menu option to open the Script Debugger Watch window.
When the Watch window is open, the GP Power Tools Script
Debugging Context window will open to allow changing of Dictionary
context.

Debug Table Buffers
Use this menu option to open the Script Debugger Table Buffers
window.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 297

SQL Execute Setup

You can open the SQL Execute Setup window by selecting SQL Execute
Setup from the Cards section of the GP Power Tools Area Page or by
selecting Scripting >> SQL Execute Setup from the Options button drop
list on the main window. This is an Advanced Mode feature.

The SQL Execute Setup window can be used to run any Transact SQL
statements without requiring the SQL Administration Tools or MS Query.
Commands written in this window can be used to view or manipulate
data in any table. This window is like the Query Analyzer window that is
installed with the SQL Server client tools.

Script IDs created in this window can be loaded and executed from an
Trigger Setup trigger, a Runtime Execute Setup script or a .Net Execute
Setup script. This allows a Transact SQL query to be used within Dexterity
or .Net code.

When using the browse buttons on this window when the sort by drop
down list is set to by Project ID, there will be a soft limit at the first and
last record within a project. Clicking the browse button a second time will
move past the soft limit.

C H A P T E R 5 D E V E L O P E R T O O L S

298 G P P O W E R T O O L S

The following is a description of the individual fields on the window:

Script ID
This field contains a unique identifier for each SQL Execute Setup
script in the system. The lookup button can be clicked to select from
existing script IDs. The lookup will be filtered to the current project if
the script belongs to a project.

The Notes Button can be clicked to enter Release Notes. Use the
Timestamp Button to add a timestamp to the bottom of the release
notes.

Note that the Script IDs starting with the prefix character of tilde (~) are
reserved for use by Microsoft Support.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 299

SQL Execute Information
Click this button to display what resources are using this script.

Script Name
This field contains a description of the script.

Long Description
Use the Script Name expansion button to open the Long Description
window. Use this field for a more detailed description of the script.
The Long Description is displayed on the SQL Executer window.

Published to Executer Window
This checkbox indicates if the current script can be accessed from the
read only SQL Executer window.

Minimize Log Entries
This option can be enabled to prevent the script generating entries in
the GPPTools_<User>_<Company>.log file unless an error occurs.

C H A P T E R 5 D E V E L O P E R T O O L S

300 G P P O W E R T O O L S

Execute Script for all Companies
A non-published script can be executed against multiple companies
using this option. Use the Expansion Button to select companies.

To the left of the company selection list are Mark All and Mark None
buttons which can be used to quickly change the selection of the
companies. You can also select the System Database if desired. If the
selection of the databases is changed from the default (system
database not selected and all company databases selected), the
selection will be saved along with the script.

Project ID
Use this field to add the current script to a development project.

Parameter ID
Use this field to specify a Parameter List to be used with the script.

Execute Query in which SQL Database
This drop-down list contains a list of SQL databases. The System
database and each of the company databases appear in this list.

Limit results set to fixed number of lines
You can use this field to limit the amount of data returned in the
results set. Set its value to zero (0) for no limit.

Setting the value of this field to zero (0) can cause SQL Execute Setup to take
a long time to display the results if the returned results set is very large.

Database
This non-editable field shows the name of the selected SQL Database.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 301

Clipboard Button
This expansion button opens the SQL Execute Script Clipboard
window. This window can be used as temporary storage when editing
scripts to allow for cutting and pasting between scripts. Use the Copy
Script Button if you wish to copy the current script to the clipboard
window and the Clear Script Button to clear the clipboard window
contents.

When changing the script purpose, you will be asked if you want to copy to
the clipboard before the script is reset. You can then copy back the portions of
the script you want to keep. The clipboard window will close with the SQL
Execute Setup window.

Script
This text field contains the Transact SQL statements to be executed.

SQL Execute Setup can be used to manipulate data in tables when large set-based
changes are required. In this situation writing the equivalent Dexterity sanScript
code may not be the most efficient method.

The following is a description of the additional buttons on the window:

Show Dexterity Technical Name Syntax Button
Use this button to display examples of how Dexterity Technical
Names can be used in the script.

C H A P T E R 5 D E V E L O P E R T O O L S

302 G P P O W E R T O O L S

Divider Adjustment Buttons
Use these buttons to adjust the position of the horizontal window
divider between script and results data.

Parameters Button
Use this button to insert a Parameter Placeholder into the script for the
Parameter List selected with the Parameter ID. See the section under
Trigger Setup for more information.

Insert Button
Use this button to insert standard Transact-SQL commands, Parameter
Placeholders or code Snippets.

If Placeholder for Substitution is selected, the Placeholders window
will open.

If Snippets is selected, the snippets available for the current language
are displayed in their groups as specified on the Snippet Setup
window.

Names Button
Use this button to insert a table, field or constant resource into the
script. Once clicked the Table Explorer window will open or if
Constants (value) is selected the Constant Explorer window will open.
See the section under Trigger Setup for more information.

Execute Button
Use this button to execute the script in the context of the SQL database
specified. Any execution errors will cause an Exception Error Dialog
to open. Results can be shown as unformatted text or as a list.

If a selection of the script is currently highlighted, you can decide to execute
the highlighted section or the entire script.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 303

Before the SQL script is executed, it is checked for possible damaging
commands and if they exist an additional confirmation is required.

If a GO Statement is used in the script, make sure it is used at the beginning
of the line. When GO Statements exist, the script will be executed in sections
with one section for each GO statement. Only the final section will display
results, so place any select statements to be displayed after the final GO
Statement.

Dexterity table and field names can be used in the Transact SQL when
surrounded by braces { }. They will be converted to the equivalent
physical names prior to the code being executed.

The alias keyword can be used to specify an alias other than the table’s
physical name. The show keyword can be used to display the field’s
Dexterity display name as the column name. The field keyword is
used to limit the generated physical equivalents to be only the column
name without the table name or alias prefix.

Duplicate Button
Use this button to duplicate or rename the current script ID to a new
script ID. This is useful when an existing script ID is very similar to
the new one you want to create.

C H A P T E R 5 D E V E L O P E R T O O L S

304 G P P O W E R T O O L S

A new script ID must be specified in the dialog which opens.

Users Button
Use this button to specify which users and companies the script
should be published to. Once clicked Publish Script for Users window
will open.

You can view this window by users or by companies and navigate the
tree to select the user and company combinations as required. You can
also select by User Classes, Security Roles, Security Tasks and Security
Modified Alternate IDs.

If all users are selected on the tree, the tree selections will be cleared and the
mode will change from Selected Users and Companies to All Users and
Companies. If no users are selected on the tree, the mode will change to All
Users and Companies. A red visual cue will be displayed if there are user
settings present.

The Exclude Selected Users and Companies rather than include them
option allows you to invert the behavior of the window. This is handy
when it is easier to specify the users and companies for whom the
script should not be published to.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 305

Find Button
Use this button to search the results list for the specified search string.
You can select to search All Columns or the current Sort Column and
whether the search should be a Contains search or a Begins With
search.

Export Button
This button will allow the result set displayed in the list view to be
exported to a file or directly to an email. The default email settings can
be set up in the Email Settings window.

Export Mode
Use this drop-down list to select the format for the exported file. The
file can be exported as Tab Delimited, Comma Delimited or as a
HTML Table.

Gotos Button
Use this button drop-down menu to setup SQL Gotos or execute an
existing SQL Goto on the selected rows in the returned data. You can
also right click on the results list.

C H A P T E R 5 D E V E L O P E R T O O L S

306 G P P O W E R T O O L S

SQL Gotos allow further actions to be taken on the selected rows of the
data returned from SQL Execute scripts. This feature uses Runtime
Executer Setup scripts with the Script Purpose set to
SQLExecuteGotoHandler to define the required actions and the SQL
Execute Setup Gotos window to configure the label to display on the
Goto Button and the order of the SQL Gotos. The Runtime Executer
Setup Script is executed for each selected line in the result set.

Use the Add Button to add a new SQL Goto and then select the Script
ID and define the label to display on the Goto Button. Use “&” if you
wish to add a keyboard shortcut and “&&” if you want to add an
ampersand. The order of the SQL Gotos to be changed using the Top,
Up, Down and Bottom buttons.

Mark the checkbox if you want to close or clear the SQL Results after
Goto script has been executed.

The Goto Mode drop down list allows scripts to be executed after the query is
displayed or before the window is closed. These can be used to set and store
the sort column if you want it remembered, or automatically scroll through
the displayed data.

The following is a description of the Script menu available for the
window:

Find …
Use this menu option to open the script editor Find window to search
for text. Control-F can be used as a shortcut.

Find Next
Use this menu option to find the next occurrence. Control-G can be
used as a shortcut.

Replace …
Use this menu option to open the script editor Replace window to
search and replace text. Control-R can be used as a shortcut.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 307

Replace and Find Next
Use this menu option to replace and find the next occurrence. Control-
B can be used as a shortcut.

Goto Line …
Use this menu option to open the script editor Goto Line window to
jump to a specified line. Control-N can be used as a shortcut.

Save and Continue
Use this menu option to save the current script without clearing the
window. Control-S can be used as a shortcut.

Check Syntax
Use this menu option to check the syntax of Dexterity resource names
contained in curly braces in the current script. Control-K can be used
as a shortcut.

Convert References
Use this menu option to convert the Dexterity resource names
contained in curly braces in the current script to their SQL equivalents.
Control-0 can be used as a shortcut.

Options
Use this menu option to open the Options window to allow the font
style and size to be changed. Control-O can be used as a shortcut.

The Color options are disabled because the syntax highlighting is not
available for SQL scripts.

C H A P T E R 5 D E V E L O P E R T O O L S

308 G P P O W E R T O O L S

Execute
Use this menu option to execute the script. Control-E can be used as a
shortcut.

Generate Dexterity Pass Through
Use this menu option to generate Dexterity pass through sanScript
code from a prototype script that can be copied and pasted into a
Dexterity development dictionary. Control-D can be used as a
shortcut.

Names Button Uses Clipboard
Use this menu option to control whether the Names Button returns
directly to the script (default) or to the clipboard.

To be able to use the clipboard, the WinthropDC.GpPowerToolsVB.dll
Addins must be installed.

Names Button Uses Fully Qualified Names
Use this menu option to control whether the Names Button returns
SQL table and columns as fully qualified, or just as table and column
names.

Names Button Adds Keyword ‘Show’
Use this menu option to control whether the Names Button
automatically adds the keyword “show” to returned SQL column
names so that they will be displayed as Technical Names rather than
Physical Names in the SQL Query. It adds the “as” clause to column
names.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 309

Following are some examples of using the resource name conversions and
keywords:

select * from {table RM_Customer_MSTR}

is converted to

select * from RM00101

select {'Customer Number' of table RM_Customer_MSTR}

from {table RM_Customer_MSTR}

is converted to

select RM00101.CUSTNMBR

from RM00101

select {'Customer Number' of table RM_Customer_MSTR show}

from {table RM_Customer_MSTR}

is converted to

select RM00101.CUSTNMBR as [Customer Number]

from RM00101

select {'Customer Number' of table RM_Customer_MSTR field}

from {table RM_Customer_MSTR}

is converted to

select CUSTNMBR

from RM00101

select {'Customer Number' of table RM_Customer_MSTR show field}

from {table RM_Customer_MSTR}

is converted to

select CUSTNMBR as [Customer Number]

from RM00101

select {'Customer Number' of table RM_Customer_MSTR show alias a}

from {table RM_Customer_MSTR alias a}

is converted to

select a.CUSTNMBR as [Customer Number]

from RM00101 a

The “table” keyword, specifying the table for a field, and surrounding
field names containing spaces with single quotes are optional, so

select {Customer Number}

from {RM_Customer_MSTR}

is converted to

select CUSTNMBR

from RM00101

C H A P T E R 5 D E V E L O P E R T O O L S

310 G P P O W E R T O O L S

.Net Execute Setup

You can open the .Net Execute Setup window by selecting .Net Execute
Setup from the Cards section of the GP Power Tools Area Page or by
selecting Scripting >> .Net Execute Setup from the Options button drop
list on the main window. This is an Advanced Mode feature.

The .Net Execute Setup window can be used to run any Visual C# or
Visual Basic.Net code without requiring the Visual Studio development
environment. Scripts written in this window can use the form, window,
table and field resources from any dictionary or to call existing functions
and procedures in any dictionary.

Script IDs created in this window can be loaded and executed from an
Trigger Setup trigger, a Runtime Execute Setup script or another .Net
Execute script. This allows code re-use in a similar fashion to having
multiple procedure calls as well as mixing of languages.

To be able to execute scripts, the WinthropDC.GpPowerToolsVC.dll and
WinthropDC.GpPowerToolsVB.dll Addins must be installed.

When using the browse buttons on this window when the sort by drop
down list is set to by Project ID, there will be a soft limit at the first and
last record within a project. Clicking the browse button a second time will
move past the soft limit.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 311

The following is a description of the individual fields on the window:

Script ID
This field contains a unique identifier for each .Net Execute Setup
script in the system. The lookup button can be clicked to select from
existing script IDs. The lookup will be filtered to the current project if
the script belongs to a project.

The Notes Button can be clicked to enter Release Notes. Use the
Timestamp Button to add a timestamp to the bottom of the release
notes.

.Net Execute Information
Click this button to display what resources are using this script.

C H A P T E R 5 D E V E L O P E R T O O L S

312 G P P O W E R T O O L S

Script Name
This field contains a description of the script.

Long Description
Use the Script Name expansion button to open the Long Description
window. Use this field for a more detailed description of the script.
The Long Description is displayed on the .Net Executer window.

Published to Executer Window
This checkbox indicates if the current script can be accessed from the
read only .Net Executer window.

Minimize Log Entries
This option can be enabled to prevent the script generating entries in
the GPPTools_<User>_<Company>.log file unless an error occurs.

Project ID
Use this field to add the current script to a development project.

Parameter ID
Use this field to specify a Parameter List to be used with the script.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 313

Script Language
This field is used to select the .Net language to be used for this script.
You can select from Visual C# or Visual Basic.Net#. When changing
the Script Language, the existing script (if any) will be replaced with
the base template for the selected language.

Clipboard Button
This expansion button opens the .Net Execute Script Clipboard
window. This window can be used as temporary storage when editing
scripts to allow for cutting and pasting between scripts. Use the Copy
Script Button if you wish to copy the current script to the clipboard
window and the Clear Script Button to clear the clipboard window
contents.

When changing the script purpose, you will be asked if you want to copy to
the clipboard before the script is reset. You can then copy back the portions of
the script you want to keep. The clipboard window will close with the .Net
Execute Setup window.

Script
This text field contains the script to be executed. It cannot have any
parameters. The script is checked for syntax errors when saved.

Changing the name of the Run() function to RunOnce() allows the .Net code
to only be execute one time for the current application instance. This can be
used to register events with handlers added to the script and only register
them once per session.

The following is a description of the additional buttons on the window:

Divider Adjustment Buttons
Use these buttons to adjust the position of the horizontal window
divider between script and output data.

C H A P T E R 5 D E V E L O P E R T O O L S

314 G P P O W E R T O O L S

Parameters Button
Use this button to insert a Parameter Placeholder into the script for the
Parameter List selected with the Parameter ID. See the section under
Trigger Setup for more information.

Insert Button
Use this button to insert a Visual C# or Visual Basic.Net code
construct, Parameter Placeholders, .Net Assemblies or code Snippets.
See the section under Trigger Setup for more information.

Helper Button
Use this button to open the Insert Helper Function window and insert
a helper function into the script. See the section under Trigger Setup
for more information.

Names Button
Use this button to insert a dictionary resource into the script. See the
section under Trigger Setup for more information.

Execute Button
Use this button to execute the script in the context of the dictionary
specified. Any compile errors will be shown in the status pane below
the script.

Duplicate Button
Use this button to duplicate or rename the current script ID to a new
script ID. This is useful when an existing script ID is very similar to
the new one you want to create.

A new script ID must be specified in the dialog which opens.

Users Button
Use this button to specify which users and companies the script
should be published to. Once clicked Publish Script for Users window
will open.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 315

You can view this window by users or by companies and navigate the
tree to select the user and company combinations as required. You can
also select by User Classes, Security Roles, Security Tasks and Security
Modified Alternate IDs.

If all users are selected on the tree, the tree selections will be cleared and the
mode will change from Selected Users and Companies to All Users and
Companies. If no users are selected on the tree, the mode will change to All
Users and Companies. A red visual cue will be displayed if there are user
settings present.

The Exclude Selected Users and Companies rather than include them
option allows you to invert the behavior of the window. This is handy
when it is easier to specify the users and companies for whom the
script should not be published to.

C H A P T E R 5 D E V E L O P E R T O O L S

316 G P P O W E R T O O L S

References Button
Use this open the .Net Execute References window. This window can
be used to add additional References to a .Net Assembly, dictionary
assembly or system DLL (Dynamic Link Library).

If the Dictionary Assembly for a product dictionary is not available, click on
the DAG Control Button to open the Dictionary Assembly Generator Control
window which can be used to generate it.

If .Net Assembly is selected, the .Net Assemblies window will open.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 317

The following is a description of the Script menu available for the
window:

Find …
Use this menu option to open the script editor Find window to search
for text. Control-F can be used as a shortcut.

Find Next
Use this menu option to find the next occurrence. Control-G can be
used as a shortcut.

Replace …
Use this menu option to open the script editor Replace window to
search and replace text. Control-R can be used as a shortcut.

Replace and Find Next
Use this menu option to replace and find the next occurrence. Control-
B can be used as a shortcut.

Goto Line …
Use this menu option to open the script editor Goto Line window to
jump to a specified line. Control-N can be used as a shortcut.

Save and Continue
Use this menu option to save the current script without clearing the
window. Control-S can be used as a shortcut.

Check Syntax
Use this menu option to check the syntax of the current script. Any
errors will be displayed in a dialog window. Control-K can be used as
a shortcut.

C H A P T E R 5 D E V E L O P E R T O O L S

318 G P P O W E R T O O L S

References
Use this menu option to open the .Net Execute References window.
Control-0 can be used as a shortcut.

Options
Use this menu option to open the Options window to allow the font
style, and size to be changed. Control-O can be used as a shortcut.

The Color options are disabled because the syntax highlighting is not
available for .Net scripts.

Execute
Use this menu option to execute the script. Control-E can be used as a
shortcut.

Names Button Uses Clipboard
Use this menu option to control whether the Names Button returns
directly to the script (default) or to the clipboard.

To be able to use the clipboard, the WinthropDC.GpPowerToolsVB.dll
Addins must be installed.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 319

Snippet Setup

You can open the Snippet Setup window by selecting Snippet Setup from
the Cards section of the GP Power Tools Area Page or by selecting
Scripting >> Snippet Setup from the Options button drop list on the main
window. This is an Advanced Mode feature.

The Snippet Setup window can be used to create and store snippets of
code that can be inserted into the script editors for the Trigger Setup,
Runtime Execute Setup, SQL Execute Setup, and .Net Execute Setup
windows.

When using the browse buttons on this window when the sort by drop
down list is set to by Project ID, there will be a soft limit at the first and
last record within a project. Clicking the browse button a second time will
move past the soft limit.

The following is a description of the individual fields on the window:

Snippet ID
This field contains a unique identifier for each snippet in the system.
The lookup button can be clicked to select from existing snippet IDs.
The lookup will be filtered to the current project if the snippet belongs
to a project.

C H A P T E R 5 D E V E L O P E R T O O L S

320 G P P O W E R T O O L S

The Notes Button can be clicked to enter Release Notes. Use the
Timestamp Button to add a timestamp to the bottom of the release
notes.

Click this button to display what resources are using this snippet.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 321

Snippet Name
This field contains a description of the snippet.

Snippet Mode
This drop-down list selects the development language of the snippet.
This also controls from which script editors the snippet will be
available to insert.

Snippet Menu
This optional field allows snippets to be grouped on the Insert Button.

Project ID
Use this field to add the current snippet to a development project.

Parameter ID
Use this field to specify a Parameter List to be used with the snippet.

Execute Dexterity SanScript code in the context of Product
This drop-down list contains a list of products currently installed on
the Microsoft Dynamics GP workstation. Only available when in
Dexterity sanScript Snippet Mode.

Modified
This checkbox can be used to identify that this snippet should be
executed in the context of the modified dictionary. This allows the
script to reference Modifier added local fields. Only available when in
Dexterity sanScript Snippet Mode.

To be able to execute scripts against modified dictionaries, the
WinthropDC.GpPowerToolsVC.dll Addins must be installed.

Clipboard Button
This expansion button opens the Snippet Script Clipboard window.
This window can be used as temporary storage when editing snippets
to allow for cutting and pasting between snippets. Use the Copy Script
Button if you wish to copy the current snippet to the clipboard
window and the Clear Script Button to clear the clipboard window
contents.

C H A P T E R 5 D E V E L O P E R T O O L S

322 G P P O W E R T O O L S

Script
This text field contains the snippet code.

The following is a description of the additional buttons on the window:

Help Button
Use this button (highlighted on screenshot) to open the full Dexterity
Help file. Only available when in Dexterity sanScript Snippet Mode.

Parameters Button
Use this button to insert a Parameter Placeholder into the script for the
Parameter List selected with the Parameter ID. See the section under
Trigger Setup for more information.

Insert Button
Use this button to insert a code construct (dependent on development
language selected) or Parameter Placeholders. See the section under
Trigger Setup for more information.

Helper Button
Use this button to open the Insert Helper Function window and insert
a helper function into the script. See the section under Trigger Setup
for more information.

Names Button
Use this button to insert a dictionary resource into the script. See the
section under Trigger Setup for more information.

Duplicate Button
Use this button to duplicate or rename the current snippet ID to a new
script ID. This is useful when an existing script ID is very similar to
the new one you want to create.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 323

A new snippet ID must be specified in the dialog which opens.

The following is a description of the Script menu available for the
window:

Find …
Use this menu option to open the script editor Find window to search
for text. Control-F can be used as a shortcut.

Find Next
Use this menu option to find the next occurrence. Control-G can be
used as a shortcut.

Replace …
Use this menu option to open the script editor Replace window to
search and replace text. Control-R can be used as a shortcut.

Replace and Find Next
Use this menu option to replace and find the next occurrence. Control-
B can be used as a shortcut.

C H A P T E R 5 D E V E L O P E R T O O L S

324 G P P O W E R T O O L S

Goto Line …
Use this menu option to open the script editor Goto Line window to
jump to a specified line. Control-N can be used as a shortcut.

Save and Continue
Use this menu option to save the current snippet without clearing the
window. Control-S can be used as a shortcut.

Convert References
Use this menu option to convert the Dexterity resource names
contained in curly braces in the current snippet to their SQL
equivalents. Control-0 can be used as a shortcut.

Options
Use this menu option to open the Options window to allow the syntax
highlighting colors, font style, and size to be changed. Control-O can
be used as a shortcut.

Names Button Uses Clipboard

Use this menu option to control whether the Names Button returns
directly to the script (default) or to the clipboard.

To be able to use the clipboard, the WinthropDC.GpPowerToolsVB.dll
Addins must be installed.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 325

Names Button Uses Fully Qualified Names
Use this menu option to control whether the Names Button returns
SQL table and columns as fully qualified, or just as table and column
names.

Names Button Adds Keyword ‘Show’
Use this menu option to control whether the Names Button
automatically adds the keyword “show” to returned SQL column
names so that they will be displayed as Technical Names rather than
Physical Names in the SQL Query. It adds the “as” clause to column
names.

C H A P T E R 5 D E V E L O P E R T O O L S

326 G P P O W E R T O O L S

Parameter Lists

You can open the Parameter List Maintenance window by selecting
Parameter Lists from the Cards section of the GP Power Tools Area Page
or by selecting Scripting >> Parameter Lists from the Options button drop
list on the main window. This is an Advanced Mode feature.

Parameter Lists provide a method to create a custom user interface to
request information from the user prior to a script being executed. The
selections made by the user can then be used in the scripts to change the
behavior of the script or select the data range the script runs against.

Parameter Lists can be used with Automatic Trigger Mode Non-Logging
Trigger scripts (for Focus Events, Form Menu and Field Context Menu
Types), Runtime Execute Setup scripts, SQL Execute Setup scripts and
.Net Execute Setup scripts.

Once a Parameter List dialog has been used, the parameters are available
in the script which opened the dialog and any script called by that script
as long as the called scripts are linked to the same Parameter ID or have a
blank Parameter ID.

To use the data returned from the Parameter List Dialog, just insert a
Parameter Placeholder into the script. This will be replaced with the data
from the dialog prior to the script being executed. Parameter Placeholders
are special language dependent character combinations which return the
correct data type so that the script will compile and will also be recognized
by the script pre-processor so they can be substituted.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 327

When using the browse buttons on this window when the sort by drop
down list is set to by Project ID, there will be a soft limit at the first and
last record within a project. Clicking the browse button a second time will
move past the soft limit.

The following is a description of the individual fields on the window:

Parameter ID
This field contains a unique identifier for each Parameter List in the
system. The lookup button can be clicked to select from existing
parameter IDs. The lookup will be filtered to the current project if the
parameter list belongs to a project.

The Notes Button can be clicked to enter Release Notes. Use the
Timestamp Button to add a timestamp to the bottom of the release
notes.

C H A P T E R 5 D E V E L O P E R T O O L S

328 G P P O W E R T O O L S

Parameter List Information
Click this button to display what resources are using this parameter
list.

Parameter Description
This field contains a description of the parameter list.

Project ID
Use this field to add the current parameter list to a development
project.

Parameter Title
This field contains the title for the parameter list. This value will be
used at the top of the Parameter List dialog as well as for the title of
the dialog’s window.

Parameter Instructions
This field contains the instructions for the user on how they should
use the parameter list. This field will be displayed at the top of the
Parameter List dialog.

The following is a description of the parameter definition fields for the ten
parameters on the window:

Parameter Active
This checkbox specifies whether the current parameter is enabled. This
allows a parameter to be temporarily disabled without having to
remove the rest of the settings for the parameter.

Parameter Hidden
This checkbox specifies whether the current parameter is hidden. This
allows a parameter to be available for use with coding without being
shown to the end user.

Parameter Prompt
This field contains a name of the parameter and will be used for the
prompt of the parameter.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 329

Parameter Type
Use this drop-down list to select the data type for the parameter. You
can select from:

• Checkbox
• Number
• Currency
• Quantity
• String
• Lookup
• Long String
• Date
• Token Date
• Time
• List
• List (SQL)

Parameter Mode

This drop-down list sets whether the parameter is a single value or a
range of values. You can select from:

• Single Field
• From & To Fields
• All, From & To Fields

Parameter Options

This drop-down list sets various options depending on the Parameter
Type selected.

For Lookup Type, you can select from:

• Account Lookup
• Customer Lookup
• Customer Class Lookup
• Vendor Lookup
• Vendor Class Lookup
• Item Lookup
• Item Class Lookup
• Inventory Site Lookup
• User Lookup
• Company Address Lookup
• Employee Lookup
• Employee Class Lookup
• Salesperson Lookup
• Territory Lookup
• Shipping Method Lookup
• Payment Terms Lookup
• Price Level Lookup
• Country Code Lookup
• Checkbook Lookup
• Currency Lookup
• Custom Lookup (SQL)
• Custom Lookup (Form
• Custom Lookup (SQL) Uppercase
• Custom Lookup (Form) Uppercase

C H A P T E R 5 D E V E L O P E R T O O L S

330 G P P O W E R T O O L S

For List Type, you can select from:

• Cleared Value(s)
• First List Entry
• Default Value(s)

For other types, you can select from:

• Cleared Value(s)
• Default Value(s)
• Min & Max Values

For String and Long String Types, you can also select from:

• Uppercase Cleared Value(s)
• Uppercase Default Value(s)
• Uppercase Min & Max Values

Parameter Length/Decimal

This drop-down list controls the length of the field or the number of
decimal places for the parameter fields.

For Number Type, you can select the size of the parameter 16 or 32 bit
and whether the number should be signed or unsigned.

For Currency and Quantity Types, you can select the number of
decimal places from 0 to 5.

For String and Long String Types, you can select the length of the
string in 5 character increments.

For List Type, you can select what will be returned by the parameter,
you can select from:

• Position
• Data
• String

For all other Types, the length value is fixed.

Parameter Expansion Button
Click this button to open the appropriate Parameter List Maintenance
Additional Information window.

For Drop-down lists, it will open the Parameter List Drop-down List
Maintenance window. This window is used to set up the drop-down
list values for a List Type parameter. The drop-down list will be
populated with the string on each line in the order it is listed in the
window. You can specify an integer (32 bit) value for each entry using
a comma.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 331

For SQL Drop-down lists, it will open the Parameter List Drop-down
List SQL Script window. This window is used to select a SQL Execute
Setup script which returns an ordered query with two columns; a
string and an integer (32 bit) value.

The SQL Execute script used to populate the SQL List can include
placeholders which will be substituted with values from other parameter list
fields when the script is executed. This allows to contents of the list to be
changed based on other parameter data already entered.

For SQL Custom Lookups, it will open the Parameter List Lookup SQL
Script window. This window is used to select a SQL Execute Setup
script which returns a query with three string columns; an ID string, a
Description string and a string to be returned (usually the same as the
ID value).

C H A P T E R 5 D E V E L O P E R T O O L S

332 G P P O W E R T O O L S

The SQL Execute script used to populate the SQL Lookup can include
placeholders which will be substituted with values from other parameter list
fields when the script is executed. This allows to contents of the lookup to be
changed based on other parameter data already entered.

For Form based Custom Lookups, it will open the Parameter List
Lookup Form Definition window. This window is used to define the
form, window and field information required to drive an existing
lookup form in any dictionary installed in Microsoft Dynamics GP.

Parameter Single/Minimum/From Value
Depending on the Parameter Option selected, this field can be used to
specify a Minimum value for the parameter, or a default value for the
Single or From field of the parameter.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 333

Parameter Maximum/To Value
Depending on the Parameter Option selected, this field can be used to
specify a Maximum value for the parameter, or a default value for the
To field of the parameter.

The order of the ten parameter in the Parameter List can be adjusted using the
small up buttons and down buttons on the right-hand side of the window.

The following is a description of the additional buttons on the window:

Duplicate Button
Use this button to duplicate or rename the current parameter ID to a
new parameter ID. This is useful when an existing parameter list is
very similar to the new one you want to create.

A new parameter ID must be specified in the dialog which opens.

Preview Button
Use this button to show a preview of what the Parameter List dialog
will look like when it executed. If the OK button is used to close the
Parameter List dialog, an informational dialog will open showing the
results returned for the various languages.

C H A P T E R 5 D E V E L O P E R T O O L S

334 G P P O W E R T O O L S

The Parameter List dialog window will automatically resize to the size needed to
display only the used and active parameters. If a parameter is unused or not active
it will leave a gap in the dialog, except at the bottom where the window will be
resized smaller.

The following is a description of the Options menu available:

Save and Continue
Use this menu option to save the current parameter list without
clearing the window. Control-S can be used as a shortcut.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 335

Messages Setup

You can open the Message Setup window by selecting Messages Setup
from the Cards section of the GP Power Tools Area Page or by selecting
Scripting >> Messages Setup from the Options button drop list on the
main window. This is an Advanced Mode feature.

Messages Setup allows you to define reusable warning message text in
multiple languages which can be used in the Trigger Setup window or
with Helper Functions.

Using Messages allows the same message to be displayed in multiple locations and
for the message to be automatically translated on multi-lingual systems. If a
change to the message is required, it can be updated in a single location as it is not
hard coded into scripts.

When using the browse buttons on this window when the sort by drop
down list is set to by Project ID, there will be a soft limit at the first and
last record within a project. Clicking the browse button a second time will
move past the soft limit.

The following is a description of the individual fields on the window:

Message ID
This field contains a unique identifier for each Message in the system.
The lookup button can be clicked to select from existing message IDs.
The lookup will be filtered to the current project if the message
belongs to a project.

C H A P T E R 5 D E V E L O P E R T O O L S

336 G P P O W E R T O O L S

The Notes Button can be clicked to enter Release Notes. Use the
Timestamp Button to add a timestamp to the bottom of the release
notes.

Note that the Message IDs starting with the prefix character of tilde (~) are
reserved for use by Microsoft Support.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 337

Messages Information
Click this button to display what resources are using this message.

Description
This field contains a description of the message.

Project ID
Use this field to add the current message to a development project.

Message List
This scrolling window is where you can enter the message and 3
prompts for buttons for each language. If there is no message for a
particular language, the message for the default language will be used
instead.

The following is a description of the additional buttons on the window:

Duplicate Button
Use this button to duplicate or rename the current message ID to a
new message ID. This is useful when an existing message ID is very
similar to the new one you want to create.

A new message ID must be specified in the dialog which opens.

C H A P T E R 5 D E V E L O P E R T O O L S

338 G P P O W E R T O O L S

Test Button
Use this button to display a system dialog based on the message ID
currently displayed.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 339

Dynamic Trigger Logging

You can open the Dynamic Trigger Logging window by selecting
Dynamic Trigger Logging from the Cards section of the GP Power Tools
Area Page or by selecting Scripting >> Dynamic Trigger Logging from the
Options button drop list on the main window. This is an Advanced Mode
feature.

There are times when you are unable to use convention Dexterity Script
Logging to follow the flow of scripts in Microsoft Dynamics GP. Some
examples are:

• Dexterity Script Logging is unavailable when using Service Based
Architecture (SBA) and cannot be enabled.

• Dexterity Script Logging sometimes causes instability which can cause
Microsoft Dynamics GP to crash.

Dynamic Trigger Logging can be used as an alternative method to track
the flow of scripts. By registering triggers before and after any event
(Focus, Table or Script) in the system and logging when that trigger fires,
you can track when code is executed.

You will need to know the focus events, table names and script names in advance
to be able to register dynamic triggers against them. When working with a Service
Procedure for Service Based Architecture, you could capture logs of the code
running in the desktop client to get all the procedure and function names. Once
you have the names, they can be used to set up the dynamic triggers.

C H A P T E R 5 D E V E L O P E R T O O L S

340 G P P O W E R T O O L S

When you first open the Dynamic Trigger Logging window, if the file path has
not been written into the Dex.ini file, you will be asked if you want to use the
default setup file name.

The following is a description of the individual fields on the window:

File Path
This field contains the path to the Dynamic Trigger Logging setup file.

Trigger Type
Select the type of trigger from Focus Trigger, Table Trigger or Script
Trigger.

Trigger Mode
Select the mode of the trigger depending on the type. Focus Triggers
can use Pre, Change, Post, Print, Activate, Fill, Insert and Delete. Table
Triggers can use Read, Read Lock, Read Both, Add, Update, Save and
Delete. Script Triggers use a single Script mode for both Procedures
and Functions.

Product Dictionary
Select a product dictionary from the list of installed products. The
Dictionary ID field will be updated automatically.

Dictionary ID
Select a product using its dictionary ID. The Product Dictionary field
will be updated automatically.

Form Name
Enter the form name or use the lookup to select. This field is required
for Focus Triggers and is optional for Table Triggers and Script
Triggers.

Window/Table/Procedure/Function Name
Enter the window, table, procedure or function name as appropriate
or use the lookup to select. Functions are denoted by ending with “()”.

Field Name
Enter the field name or use the window lookup to select. Adding a
field name to a Focus Trigger or Table Trigger will get the value of the
field displayed in the log entries created.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 341

Script Expansion Button
For each trigger created, clocking the expansion button will allow an
additional expression to be entered as a script. This expression will be
evaluated, and the resulting data will be logged with the trigger.

The expression script must not contain a semicolon. It can be used to
display a field value off a window or a global variable value. Use the
Names button to search for the desired field or global variable.

The following is a description of the additional buttons on the window:

OK Button
This button will save the triggers to the Dynamic Trigger Logging
setup file as defined by the File Path field and writes the File Path into
the MBS_Debug_LogListPath Dex.ini Setting.

Cancel Button
This button will close the window without making any changes.

Clear Button
Use this to clear the window. Note it will only clear the File Path field
and remove the MBS_Debug_LogListPath Dex.ini Setting.

C H A P T E R 5 D E V E L O P E R T O O L S

342 G P P O W E R T O O L S

Delete Button
Use this clear the window. Note it will clear the File Path field and
remove the MBS_Debug_LogListPath Dex.ini Setting and delete the
Dynamic Trigger Logging setup file (if it exists).

Redisplay Button
Use this button to redisplay the list of triggers and scroll to the bottom
of the list ready to add a new Trigger.

When you launch Microsoft Dynamics GP, the MBS_Debug_LogListPath
Dex.ini Setting is checked and if it contains a path valid setup file,
Dynamic Trigger Logging will parse the setup file and register the triggers
specified. When triggers fire, they will write a record in the GP Power
Tools log files.

The Dynamic Trigger Logging setup file is a text file and can be edited manually
outside of Microsoft Dynamics GP using your favorite text editor or Notepad.exe.
The format is explained in the section at the end of the GPPTools.txt file installed
with GP Power Tools.

While the triggers registered by Dynamics Trigger Logging do not perform any
function other than writing a log entry, it is recommended that this feature is only
used by Dexterity developers.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 343

Virtual Fields

GP Power Tools Build 31 or later adds Virtual Field functionality which
can be used to programmatically add fields to windows without needing
Modified or Alternate windows.

Introduction
Virtual Field functionality has existed in Dexterity since version 8.0, but it
was never documented and released publicly. The core Virtual Field
functionality was very limited as it was originally designed to only work
with read only fields in a scrolling window for the original Dexterity
based Navigation Lists. More recently Virtual Fields were used with the
Dexterity based Workflow implementation.

Using the recently added improvements to Virtual Fields, combined with
custom code, GP Power Tools now offers Virtual Field functionality by a
series of Helper Functions and a Runtime Execute Custom Script Purpose.

Adding Virtual Fields
Virtual Fields can be added to any window in any dictionary in Microsoft
Dynamics GP and can be based on any existing field defined in any
dictionary, assuming that field is not already on the window.

The Virtual Fields must be added using a Trigger Setup Form Pre trigger
running before original script, or Form Control Reject Form Pre Script, or
from a Runtime Execute script called from one of those events. Calling the
Virtual Field Helper Functions from any other location will generate an
error message in the GP Power Tools log and abort.

While you can use a dictionary field from any dictionary, GP Power Tools has a
number of fields added to its dictionary for use with the Virtual Field
functionality. These fields are named with VF_Field_<Type>_XX convention in
the dictionary and support about 35 datatypes/keyable length/format
combinations. There are 10 of each of these fields available numbered from 01 to
10. It is recommend to use these fields to ensure that they are fields that will never
exist on any window.

When adding Virtual Fields, you have the options to add a Prompt, a
Lookup and format field to the Virtual Field. Choose the
MBS_Add_Virtual_Field Helper Function that has the features you need.

Addressing Virtual Fields
As Virtual Fields do not actually exist on a form definition in a dictionary
you cannot address them directly from Dexterity. You will need to use a
Helper Function to get a reference (pointer) to the field and then use
Helper Functions to work with the field or use the field() function to re-
instantiate the reference.

Using the field() function to re-instantiate the reference will only work if the
script is executed in the same dictionary context as the form and window that the
field exists on.

C H A P T E R 5 D E V E L O P E R T O O L S

344 G P P O W E R T O O L S

Triggering On Virtual Fields
When using the Helper Functions to add Virtual Fields to windows in the
core Dynamics.dic dictionary, you have the option to register Field Pre,
Field Change, and Field Post triggers against the Virtual Field and its
optional Lookup.

Once the triggers have been registered, you can use a Runtime Execute
script with the 5261: VirtualFieldHandler Script Purpose to take any
desired actions when the triggers fire.

Virtual Field triggers do not work with third party dictionaries. It is
recommended to either only use read only fields or to perform any validation
needed for editable fields when saving the record. Using Lookups or button fields
will not work as it is not possible to trigger a script.

Making Space for Virtual Fields
Virtual fields can be added to any location on a window. They can be
added to a blank space if one is available or over the top of an existing
field, if desired. If you wish to expand a window to make space for
additional Virtual Fields, there is an MBS_Expand_Virtual_Field_Window
Helper Function.

Horizontal lines can also be added using the MBS_Add_Virtual_FieldLine
Helper Function.

Virtual Field Limitations
Due to undocumented nature of Virtual Fields, there are some limitations
caused by the underlying Dexterity language:

• Virtual Fields do not work with the Web Client.

• Adding Triggers to Virtual Fields only works for windows
contained in the core Dynamics.dic dictionary.

• Virtual Fields have black borders. This is because Virtual Fields
were originally created to work in scrolling windows where the
border should not be shown. Using a black border was the only
way to show a border at all.

 C H A P T E R 5 D E V E L O P E R T O O L S

 G P P O W E R T O O L S 345

Additional Developer Features

GP Power Tools adds some extra features to help developers. Below is a
summary of the features:

Macro Play Fast
Added to the Macro menu is the option to Play Fast. This option is the
same as the normal play macro option but runs about three times faster.

Script Debugger Context
When the Dexterity Script Debugger is opened, the Script Debugger
Context window is opened automatically. This window can be used to
change the Script Debugger Dictionary Context easily without needing
change Dex.ini settings or restart the application. Use the checkbox at the
bottom of the window to control if single or double click is need to change
context.

C H A P T E R 5 D E V E L O P E R T O O L S

346 G P P O W E R T O O L S

Resource Information Context
When the Dexterity Script Debugger is enabled, the Resource Information
window (when in Form, Window & Fields mode) has a Link to Dexterity
Script Debugger option which will link the Dictionary drop down list on
the Resource Information window to Script Debugger Context.

Runtime Execute Context
When the Dexterity Script Debugger is enabled, the Runtime Execute
Setup window will default the Dictionary Context to match the Script
Debugger Context.

Open Script Debugger on Startup
When the Dexterity Script Debugger is enabled, the MBS_Debug_Break
Dex.ini Setting can be used to force the Script Debugger to open upon
starting Microsoft Dynamics GP. You can then use the Script Debugger
Context window to change Dictionary context and the Script Debugger
window to set breakpoints.

 G P P O W E R T O O L S 347

 Chapter 6: Form Control Tools Features

This chapter includes the following sections:

• Form Control
• Form Control Setup*
• Password Setup*
• Form Control Status*
• Form Control Resources*

* Advanced Mode Feature

C H A P T E R 6 F O R M C O N T R O L T O O L S

348 G P P O W E R T O O L S

Form Control

GP Power Tools Form Control is a “No Code / Low Code” customization
solution for Microsoft Dynamics GP. It uses resource filters and rule based
settings to perform many different functions on any form, in any Dexterity
product dictionary, within Microsoft Dynamics GP.

It has over 50 rule types which can be applied at the Form Level, Window
Level, Scrolling Window Level and Field Level.

Form Control can be used to completely replace and improve upon
Microsoft Dynamics GP Field Level Security (which was originally created
by Winthrop before being acquired by Microsoft).

It also has rules specifically designed to be used with the Developer Tools
module, to allow single scripts to be triggered across multiple forms,
instead of needing to create separate triggers for every form.

Introduction
Form Control works when a form is opened by checking if any Form
Control IDs have a base settings resource filter that includes the current
form. If there is at least one Form Control ID that needs to be applied,
Form Control will read the dictionary and cache the Form,
Window/Scrolling Window and Field resources so it has a full list of the
resources on the form.

Form Control will then check the resource filters for each rule and if met, it
will apply the rule to the resources.

Every rule can have a Password associated with it, which can control
whether the rule should be applied or not. Passwords are defined using
the Password Setup window.

If Developer Tools is registered, every rule can also have a Form Control
Condition Script associated, which can control whether the rule should be
applied, reversed or not applied. Form Control Conditional Scripts are
created using the Runtime Execute Setup window using the 5261:
FormControlConditional Script Purpose.

Once Form Control decides a rule should be applied, it will register
triggers on the appropriate events to execute the rule. The list of triggers
registered can be reviewed from the Form Control Status window and the
list of resources cached for forms can be reviewed from the Form Control
Resources window.

Form Control Settings are applied automatically across the system as windows
are opened. If settings have been changed which affect a window while that
window is already open, the Form Control settings will be re-applied when the
window is next opened.

Form Control can also be used with Virtual Fields to add additional fields
to multiple windows with a single rule.

 C H A P T E R 6 F O R M C O N T R O L T O O L S

 G P P O W E R T O O L S 349

Form Control Rule Types
There are over 60 Rule types for Form Control. A summary of each rule is
provided below. The rules are classified in three types:

• Field Level Security rules for replacing Field Level Security. Form
Control is more powerful and works in situations where Field
Level Security fails. It is easier to maintain, can work across
multiple forms, windows and fields, and is compatible with the
Task and Role Security model.

• Form Control rules for adding “No Code / Low Code”
customizations to forms, windows and fields in Microsoft
Dynamics GP.

• Developer Tools rules for replacing multiple Developer Tools
Triggers created using the Trigger Setup window with Form
Control triggers that can work across multiple forms, window and
fields. These rules are designed to be used with a Form Control
Conditional Script.

Note that all rule types can be controlled by adding a Password ID or Script ID.
When using a script, it is also possible to programmatically change the Warning
Message and Expression fields.

Form Rules
The section below covers form level rules:

Password Form
This Field Level Security rule allows a password to be requested
before access to a form is granted.

Disable Form
This Field Level Security rule allows access to a form to be denied. It is
similar to denying access with security (or Deny based Security) but
can be conditional based on a script.

Form Menu Shortcut
This Form Control rule can be used to add a menu entry with an
optional keyboard shortcut to any form. The rule can run the change
script for any field on the window (usually a button). Fields added to
the Key Field List will have their values stored before running the
change script and restored afterwards. This rule can be used to add
Save and Continue or Print and Continue functionality to windows.

Reject Form Pre Script
This Developer Tools rule allows a Form Pre Before Original trigger to
be registered across multiple forms, and call a single Form Control
Conditional Script. The returned value from the script can stop the
original code from executing.

After Form Pre Script
This Developer Tools rule allows a Form Pre After Original trigger to
be registered across multiple forms, and call a single Form Control
Conditional Script.

C H A P T E R 6 F O R M C O N T R O L T O O L S

350 G P P O W E R T O O L S

Reject Form Post Script
This Developer Tools rule allows a Form Post Before Original trigger
to be registered across multiple forms, and call a single Form Control
Conditional Script. The returned value from the script can stop the
original code from executing.

After Form Post Script
This Developer Tools rule allows a Form Post After Original trigger to
be registered across multiple forms, and call a single Form Control
Conditional Script.

Window Rules
The section below covers window level rules:

Password Window
This Field Level Security rule allows a password to be requested
before access to a window is granted.

Disable Window
This Field Level Security rule allows access to a window to be denied.
This provides more granular security than standard security.

Change Window Title
This Form Control rule can be used to replace the title of a window, or
perform a find and replace on the window title, using the specified
semicolon (;) separated terms in the Expression field.

Clear Changes Before Window Close
This Form Control rule will clear the “changed” flag on a form before
the window closes, thus preventing the “Do you want to Save?” dialog
from appearing. It is used to block saving on a window. The Key Field
List can specify any status fields that also need to be cleared.

Focus First Window Field
This Form Control rule can be used to set the focus to the first editable
field in the last window specified in the resource filter. It is
recommended to only have a single window in the resource filter.

Reject Window Pre Script
This Developer Tools rule allows a Window Pre Before Original
trigger to be registered across multiple forms and windows, and call a
single Form Control Conditional Script. The returned value from the
script can stop the original code from executing.

After Window Pre Script
This Developer Tools rule allows a Window Pre After Original trigger
to be registered across multiple forms and windows, and call a single
Form Control Conditional Script.

Reject Window Post Script
This Developer Tools rule allows a Window Post Before Original
trigger to be registered across multiple forms and windows, and call a
single Form Control Conditional Script. The returned value from the
script can stop the original code from executing.

 C H A P T E R 6 F O R M C O N T R O L T O O L S

 G P P O W E R T O O L S 351

After Window Post Script
This Developer Tools rule allows a Window Post After Original
trigger to be registered across multiple forms and windows, and call a
single Form Control Conditional Script.

Reject Window Activate Script
This Developer Tools rule allows a Window Activate Before Original
trigger to be registered across multiple forms and windows, and call a
single Form Control Conditional Script. The returned value from the
script can stop the original code from executing.

After Window Activate Script
This Developer Tools rule allows a Window Activate After Original
trigger to be registered across multiple forms and windows, and call a
single Form Control Conditional Script.

Scrolling Window Rules
The section below covers scrolling window level rules:

Lock Scrolling Window
This Form Control rule will change the state of a Scrolling window to
read only. Thus, preventing any changes to the window or adding
new records. Note that Insert and Delete functionality must be blocked
separately using the Reject Scrolling Window Insert and Reject
Scrolling Window Delete rule types.

Reject Scrolling Window Save
This Developer Tools rule allows a Scrolling Window Change Before
Original trigger to be registered across multiple forms and scrolling
windows, and call a single Form Control Conditional Script. The
returned value from the script can stop the original code from
executing, thus preventing a table row being saved.

After Scrolling Window Save
This Developer Tools rule allows a Scrolling Window Change After
Original trigger to be registered across multiple forms and scrolling
windows, and call a single Form Control Conditional Script.

Reject Scrolling Window Delete
This Developer Tools rule allows a Scrolling Window Delete Before
Original trigger to be registered across multiple forms and scrolling
windows, and call a single Form Control Conditional Script. The
returned value from the script can stop the original code from
executing, thus preventing a table row being deleted.

After Scrolling Window Delete
This Developer Tools rule allows a Scrolling Window Delete After
Original trigger to be registered across multiple forms and scrolling
windows, and call a single Form Control Conditional Script.

Reject Scrolling Window Insert
This Developer Tools rule allows a Scrolling Window Insert Before
Original trigger to be registered across multiple forms and scrolling
windows, and call a single Form Control Conditional Script. The
returned value from the script can stop the original code from
executing, thus preventing a table row being inserted.

C H A P T E R 6 F O R M C O N T R O L T O O L S

352 G P P O W E R T O O L S

After Scrolling Window Insert
This Developer Tools rule allows a Scrolling Window Insert After
Original trigger to be registered across multiple forms and scrolling
windows, and call a single Form Control Conditional Script.

Reject Scrolling Window Fill
This Developer Tools rule allows a Scrolling Window Fill Before
Original trigger to be registered across multiple forms and scrolling
windows, and call a single Form Control Conditional Script. The
returned value from the script can stop the original code from
executing, thus preventing a table row being displayed.

After Scrolling Window Fill
This Developer Tools rule allows a Scrolling Window Fill After
Original trigger to be registered across multiple forms and scrolling
windows, and call a single Form Control Conditional Script.

Reject Scrolling Window Pre
This Developer Tools rule allows a Scrolling Window Pre Before
Original trigger to be registered across multiple forms and scrolling
windows, and call a single Form Control Conditional Script. The
returned value from the script can stop the original code from
executing.

After Scrolling Window Pre
This Developer Tools rule allows a Scrolling Window Pre After
Original trigger to be registered across multiple forms and scrolling
windows, and call a single Form Control Conditional Script.

Reject Scrolling Window Post
This Developer Tools rule allows a Scrolling Window Post Before
Original trigger to be registered across multiple forms and scrolling
windows, and call a single Form Control Conditional Script. The
returned value from the script can stop the original code from
executing.

After Scrolling Window Post
This Developer Tools rule allows a Scrolling Window Post After
Original trigger to be registered across multiple forms and scrolling
windows, and call a single Form Control Conditional Script.

Field Rules
The section below covers field level rules:

Password Field Before
This Field Level Security rule allows a password to be requested
before allowing a field to gain focus. For buttons use the Password
Field After rule.

Password Field After
This Field Level Security rule allows a password to be requested after
a change is made (or button clicked). If the password is not answered
correctly the change will be reversed and the field (or button) change
script aborted.

 C H A P T E R 6 F O R M C O N T R O L T O O L S

 G P P O W E R T O O L S 353

Warning Field Before
This Field Level Security rule displays an optional warning and
prevents a field gaining focus. It does not work with buttons.

Lock Field
This Field Level Security rule will lock a field which will prevent
editing but does not grey out the field. It is applied using the Window
Pre and Window Activate events and Field Value Changed event for
any fields in the Key Field List. It can also be added directly to the
Field Pre event for each field. Using the reverse option with a Form
Control Conditional Script you can lock and unlock fields based on
code.

Disable Field
This Field Level Security rule will disable a field which will prevent
editing and greys out the field. It is applied using the Window Pre and
Window Activate events and Field Value Changed event for any fields
in the Key Field List. It can also be added directly to the Field Pre
event for each field. Using the reverse option with a Form Control
Conditional Script you can disable and enable fields based on code.

Hide Field
This Field Level Security rule will hide a field from a window. It is
applied using the Window Pre and Window Activate events and Field
Value Changed event for any fields in the Key Field List. It can also be
added directly to the Field Pre event for each field. Using the reverse
option with a Form Control Conditional Script you can hide and show
fields based on code.

Default Field Value
This Form Control rule can set the default value for a field based on
the Expression field. It will override any value when the form is
restarted but will only insert a value when the field gains focus if it is
empty.

Clear Field Value
This Form Control rule will clear a field value.

Set Field Value
This Form Control rule will set a field value based on the Expression
Field.

Strip Invalid Field Characters
This Form Control rule will strip invalid characters from a field. Valid
characters are provided using the Expression Field. Only valid
characters will remain in the field. Leading and trailing spaces are also
removed. This rule is designed to avoid entry of special characters into
key fields, such as Customer ID, Vendor ID and Item Number.

Validate Field Value
This Form Control rule will validate the data in a field and display a
warning and restore the previous data if the validation fails. The
semicolon (;) separated list of validation rules is provided in the
Expression Field. It can even be provided as a Regular Expressions
(RegEx).

C H A P T E R 6 F O R M C O N T R O L T O O L S

354 G P P O W E R T O O L S

Format String Field Value
This Form Control rule will apply a format to field and display a
warning if the format cannot be matched. The format is provided by
the Expression field and the warning by the Warning Message field.
Using a Form Control Conditional Script allows both the Expression
and Warning Message to be programmatically changed to provide
conditional formatting. This can be used to match different phone
number or tax ID number formats based on what was entered.

Mask Field Value
This Form Control rule will change the background and font color of a
field to mask the data contained in the field. The masking is removed,
and the data becomes visible when the field gains focus. Using the
reverse option with a Form Control Conditional Script you can mask
and unmask fields based on code. Using a Password Field Before rule
as well can prevent unmasking a field unless the appropriate
password is entered.

Uppercase Field Value
This Form Control rule will force a string field into uppercase.

Set Field Background Color
This Form Control rule will change the background color of a field as a
visual cue to highlight the field. Using the reverse option with a Form
Control Conditional Script you can change and reset the color based
on code.

Set Field Font Color
This Form Control rule will change the font color of a field as a visual
cue to highlight the field. Using the reverse option with a Form
Control Conditional Script you can change and reset the color based
on code.

Add Required Field
This Form Control rule will mark a field as required. It will not work if
the underlying code in the window does not check the Dexterity
required() function. It also will not work if applied to fields on
windows that are not opened.

Enable Autocomplete Field
This Form Control rule can be used to enable AutoComplete for a
field. If desired, you can preload values specified as a semicolon (;)
separated list in the Expression Field. You can also use the Validate
Field Value if you want to limit the values entered using the list
keyword.

Round Decimals Field Value
This Form Control rule will round a numeric field to the number of
decimal places specified in the Expressions field. The number of
decimal places can either be directly specified or relative to Currency
or Quantity Decimal Places from an Item in the Item Master table with
the Item Number field specified in the Key Field List.

It will not change the visible number decimal places as that will cause
rounding issues elsewhere in the application.

 C H A P T E R 6 F O R M C O N T R O L T O O L S

 G P P O W E R T O O L S 355

Change Field Caption
This Form Control rule can be used to replace the caption of a field, or
perform a find and replace on the field caption, using the specified
semicolon (;) separated terms in the Expression field.

Set Focus to Field
This Form Control rule can be used to set the focus to the last field
specified in the resource filter. It is recommended to only have a single
field in the resource filter.

Set Focus to Next Field
This Form Control rule can be used to set the focus to the next editable
field after the last field specified in the resource filter. It is
recommended to only have a single field in the resource filter.

Clear Changes Before Field
This Form Control rule will clear the “changed” flag on a form before
the field script executes, thus preventing the “Do you want to Save?”
dialog from appearing. It is used to block saving on a window. This
should be applied to fields that can change the record displayed such
as the primary key lookup button or the browse buttons.

Reject Field Pre Script
This Developer Tools rule allows a Field Pre Before Original trigger to
be registered across multiple forms, windows and fields, and call a
single Form Control Conditional Script. The returned value from the
script can stop the original code from executing.

After Field Pre Script
This Developer Tools rule allows a Field Pre After Original trigger to
be registered across multiple forms, windows and fields, and call a
single Form Control Conditional Script.

Reject Field Change Script
This Developer Tools rule allows a Field Change Before Original
trigger to be registered across multiple forms, windows and fields,
and call a single Form Control Conditional Script. The returned value
from the script can stop the original code from executing.

After Field Change Script
This Developer Tools rule allows a Field Change After Original trigger
to be registered across multiple forms, windows and fields, and call a
single Form Control Conditional Script.

Reject Field Post Script
This Developer Tools rule allows a Field Post Before Original trigger
to be registered across multiple forms, windows and fields, and call a
single Form Control Conditional Script. The returned value from the
script can stop the original code from executing.

After Field Post Script
This Developer Tools rule allows a Field Post After Original trigger to
be registered across multiple forms, windows and fields, and call a
single Form Control Conditional Script.

C H A P T E R 6 F O R M C O N T R O L T O O L S

356 G P P O W E R T O O L S

After Field Value Changed Script
This Developer Tools rule allows a Field Value Changed After
Original trigger to be registered across multiple forms, windows and
fields, and call a single Form Control Conditional Script.

Labels
You can add label rules to a Form Control ID. These labels have no
functionality but can be used to break rules into groups by adding blank
labels and to label those groups, if desired.

 C H A P T E R 6 F O R M C O N T R O L T O O L S

 G P P O W E R T O O L S 357

Form Control Setup

You can open the Form Control Setup window by selecting Form Control
Setup from the Cards section of the GP Power Tools Area Page or by
selecting Form Control Setup from the Options button drop list on the
main window. This is an Advanced Mode feature.

When using the browse buttons on this window when the sort by drop
down list is set to by Project ID, there will be a soft limit at the first and
last record within a project. Clicking the browse button a second time will
move past the soft limit.

The following is a description of the individual fields on the window:

Form Control ID
This field contains a unique identifier for each Form Control in the
system. The lookup button can be clicked to select from existing Form
Control IDs. The lookup will be filtered to the current project if the
Form Control belongs to a project.

C H A P T E R 6 F O R M C O N T R O L T O O L S

358 G P P O W E R T O O L S

The Notes Button can be clicked to enter Release Notes. Use the
Timestamp Button to add a timestamp to the bottom of the release
notes.

Note that the Form Control IDs starting with the prefix character of tilde (~)
are reserved for use by Microsoft Support.

Form Control Information
Click this button to display what resources are using this form control.

 C H A P T E R 6 F O R M C O N T R O L T O O L S

 G P P O W E R T O O L S 359

Form Control Name
This field contains a description of the form control.

Long Description
Use the Form Control Name expansion button to open the Long
Description window. Use this field for a more detailed description of
the form control.

Disabled
Use this checkbox to disable an entire form control ID.

Manual Start Only
Use this checkbox to prevent a Form Control ID starting automatically.
It can be started manually with the MBS_Control_Start Helper
Function.

Minimize Log Entries
This option can be enabled to prevent the form control generating
entries in the GPPTools_<User>_<Company>.log file unless an error
occurs.

Project ID
Use this field to add the current form control to a development project.

C H A P T E R 6 F O R M C O N T R O L T O O L S

360 G P P O W E R T O O L S

Control Mode
Use this drop down list to add rule templates to the current form
control. There are templates for making Maintenance and Address
windows read only and for blocking Save, Delete and Insert events.

Enable in Web Client
This checkbox tells GP Power Tools that this form control should be
enabled for the Microsoft Dynamics GP Web Client .

Enable in Service Mode
This checkbox tells GP Power Tools that this form control should be
enabled when Microsoft Dynamics GP is being executed in Service
Mode (for Service Based Architecture) or when in Dynamics Process
Server (DPS) mode.

Form Control Tree
This tree contains all the rules and the resource filters for each rule.
Every form control ID will have a Base Settings rule and at least one
Resource Filter which is used for the initial check if a form control ID
should be used when a form is opened. Individual rules can be
disabled and enabled on the tree.

The buttons to the right of the tree can be used to add, edit and delete
rules and resource filters. It can also be used to reorder rules and
resource filters. Double clicking on a rule or resource filter is the same
as selecting the edit button.

See the sections below for more information on the Form Control
Setup Rule window and the Form Control Setup Resource window.

The Add Button (plus symbol) has the following options available:

• Resource
• Form Rule

o Password Form
o Disable Form
o Form Menu Shortcut
o Reject Form Pre Script
o After Form Pre Script
o Reject Form Post Script
o After Form Post Script

 C H A P T E R 6 F O R M C O N T R O L T O O L S

 G P P O W E R T O O L S 361

• Window Rule
o Password Window
o Disable Window
o Change Window Title
o Clear Changes Before Window Close
o Focus First Window Field
o Reject Window Pre Script
o After Window Pre Script
o Reject Window Post Script
o After Window Post Script
o Reject Window Activate Script
o After Window Activate Script

• Scrolling Window Rule
o Lock Scrolling Window
o Reject Scrolling Window Save
o After Scrolling Window Save
o Reject Scrolling Window Delete
o After Scrolling Window Delete
o Reject Scrolling Window Insert
o After Scrolling Window Insert
o Reject Scrolling Window Fill
o After Scrolling Window Fill
o Reject Scrolling Window Pre
o After Scrolling Window Pre
o Reject Scrolling Window Post
o After Scrolling Window Post

• Field Rule
o Password Field Before
o Password Field After
o Warning Field Before
o Lock Field
o Disable Field
o Hide Field
o Default Field Value
o Clear Field Value
o Set Field Value
o Strip Invalid Field Characters
o Validate Field Value
o Format String Field Value
o Mask Field Value
o Uppercase Field Value
o Set Field Background Color
o Set Field Font Color
o Add Required Field
o Enable Autocomplete Field
o Round Decimals Field Value
o Change Field Caption
o Clear Changes Before Field
o Set Focus to Field
o Set Focus to Next Field
o Reject Field Pre Script
o After Field Pre Script
o Reject Field Change Script
o After Field Change Script
o Reject Field Post Script
o After Field Post Script

C H A P T E R 6 F O R M C O N T R O L T O O L S

362 G P P O W E R T O O L S

o After Field Value Changed Script
• Label

See the Form Control Rule Types section above for more information
about how each Rule type can be used.

Use the Rule Users button to specify which users and companies the
selected form control rule should be active for. Once clicked Form
Control Enabled for Users window will open in rule mode.

You can view this window by users or by companies and navigate the
tree to select the user and company combinations as required. You can
also select by User Classes, Security Roles, Security Tasks and Security
Modified Alternate IDs.

If all users are selected on the tree, the tree selections will be cleared and the
mode will change from Selected Users and Companies to All Users and
Companies. If no users are selected on the tree, the mode will change to All
Users and Companies. A red visual cue will be displayed if there are user
settings present.

The Exclude Selected Users and Companies, rather than include them
option, allows you to invert the behavior of the window. This is handy
when it is easier to specify the users and companies for whom the
form control rule should not be active for.

 C H A P T E R 6 F O R M C O N T R O L T O O L S

 G P P O W E R T O O L S 363

The following is a description of the additional buttons on the window:

Duplicate Button
Use this button to duplicate or rename the current Form Control ID to
a new Form Control ID. This is useful when an existing Form Control
ID is very similar to the new one you want to create.

A new Form Control ID must be specified in the dialog which opens.

Users Button
Use this button to specify which users and companies the form control
should be active for. Once clicked Form Control Enabled for Users
window will open in form control mode.

You can view this window by users or by companies and navigate the
tree to select the user and company combinations as required. You can
also select by User Classes, Security Roles, Security Tasks and Security
Modified Alternate IDs.

C H A P T E R 6 F O R M C O N T R O L T O O L S

364 G P P O W E R T O O L S

If all users are selected on the tree, the tree selections will be cleared and the
mode will change from Selected Users and Companies to All Users and
Companies. If no users are selected on the tree, the mode will change to All
Users and Companies. A red visual cue will be displayed if there are user
settings present.

The Exclude Selected Users and Companies rather than include them
option allows you to invert the behavior of the window. This is handy
when it is easier to specify the users and companies for whom the
form control should not be active for.

Status Button
Use this button to open the Form Control Status window.

Resources Button
Use this button to open the Form Control Resources window.

The following is a description of the Options menu available for the
window:

Save and Continue
Use this menu option to save the current form control without clearing
the window. Control-S can be used as a shortcut.

 C H A P T E R 6 F O R M C O N T R O L T O O L S

 G P P O W E R T O O L S 365

Form Control Setup Rule
The Form Control Setup Rule window is displayed when adding or
editing a Rule. The fields enabled depend on the rule type selected. The
Rule Sequence number and Rule Description are displayed at the top of
the window.

The Base Settings which exist for every Form Control ID have a Rule Sequence of
zero and cannot be deleted or reordered.

The following is a description of the individual fields on the window:

Rule Disabled
This checkbox can be used to disable the current rule. It is the same as
using the checkbox on the Form Control Setup window.

Password ID
Enter an optional Password ID to be requested before processing the
current rule.

Apply rule when password its entered correctly
Use this checkbox to reverse the behavior of the password entry
success or failure.

C H A P T E R 6 F O R M C O N T R O L T O O L S

366 G P P O W E R T O O L S

Script ID
Enter an optional Script ID for a Runtime Execute Setup Form Control
Conditional script using the 5261: Form.ControlConditional Script
Purpose.

Execute Script in context of current form
Use this checkbox to override the dictionary context stored on the
Form Control Conditional script with the dictionary context of the
current form being processed by Form Control.

Warning Message
This field contains the message which will be displayed if the Form
Control rule is not met. Depending on the rule type, the message can
contain the %1 placeholder which will be substituted with the
Expression field when the message is displayed.

The message can be programmatically overridden by using the
MBS_Control_Update_Dialog Helper Function from the Form Control
Conditional script.

Display Message to screen using simple system dialog instead of
text box dialog
Select this checkbox if you want the message displayed to the screen in
a simple system dialog instead of a text box dialog.

Dialog/Alert Type
Use this drop down list to select between Information, Warning
(default), Error and Debug dialogs and desktop alerts. Debug dialogs
and desktop alerts are only shown when the Debug menu is enabled,
and Show Debug Messages is enabled. These Debug settings can be
changed on the Dex.ini Settings window.

Message ID
Use this field to define a Message ID to be used instead of the default
Warning Message. Messages have the advantage of only being defined
once and can automatically change depending on the language of the
system. To setup Messages use the Messages Setup window.

Menu Entry
This field contains the description to be displayed on the Form Menu
created by this form control.

Accelerator Key
This field contains an optional accelerator shortcut key (used with
Control) for the menu entry.

Key Field List
This field contains a list of fields which are used in different ways
depending on the current Rule type. Instructions for how the Key
Field List should be used will be displayed on the line under the field.
If including more than one field, use a semicolon (;) as a separator.

 C H A P T E R 6 F O R M C O N T R O L T O O L S

 G P P O W E R T O O L S 367

Expression
This field contains a list of expressions which are used in different
ways depending on the current Rule type. Information on how the
Expression field can be used can be viewed by clicking the Expression
Information Button. If including more than one expression, use a
semicolon (;) as a separator.

The expression can be programmatically overridden by using the
MBS_Control_Update_Expression Helper Function from the Form
Control Conditional script.

Expression Usage Help Button
Click this button to open the Expression Usage Help window.

Expression Mode
This drop down list is used with the Set Decimal Field rule to specify if
basing the Decimal places relative to the Currency or Quantity
Decimal Places defined on the Item Master table.

Ignore Case/Force Uppercase
This checkbox is used to specify that the expression should be treated
as case insensitive, or the resulting data should be forced to uppercase
depending on the current Rule type.

Use Regular Expression (RegEx)
This checkbox is used to specify that the Expression for the Validate
Field Value rule should be interpreted as a Regular Expression rather
than the simpler GP Power Tools validation rules. Information on how
to use Regular Expressions (RegEx) is available via an internet search.

C H A P T E R 6 F O R M C O N T R O L T O O L S

368 G P P O W E R T O O L S

Color Selection
This read only field displays the current color stored for the Set Field
Background Color or Set Field Font Color Rule types.

Select Button
Click this button to open the color selection dialog. Click the Define
Custom Colors to see the full color spectrum and select from 16.7
million available 24-bit colors.

Reset Button
Click this button to reset back to the default system color for the
background or font.

Apply to Fields Directly
Use this checkbox to apply triggers directly to the fields included the
Resource Filter in addition to referencing them from Window level
events. This can be used if other code on a window is preventing form
control rules from working.

Run rule delayed
Use this checkbox to change the timing of when the rule is applied.
Running delayed will ensure the rule is applied after any existing code
has completed.

Running a “Reject” rule type using run delayed will mean that the rule will
be queued to run before the original code, but it will run after all other code
has completed. This will prevent it being able to reject the original script.

Reverse action based on Script condition
This checkbox can be used to alter the behavior of a reversable rule.
Normally the Form Control Conditional script will decide if the rule is
applied or not applied. With a reversable rule, this checkbox will
change the behavior to either apply or un-apply the rule.

For example: With the Lock Field rule, if the checkbox is not selected, the
script can decide if the field is locked or left unchanged. If the checkbox is
selected, the script can decide if the field locked or unlocked.

 C H A P T E R 6 F O R M C O N T R O L T O O L S

 G P P O W E R T O O L S 369

Stop processing rules
Select this checkbox to stop processing any subsequent rules for the
current Form Control ID after processing the current rule. It will not
take effect if the Form Control Conditional script decides the rule
should not be processed.

Jump to rule number
Put a rule number into this field to jump to a rule other than the next
rule in the sequence for the Form Control ID. This option can only
jump to rule numbers higher than the current rule. It will not take
effect if the Form Control Conditional script decides the rule should
not be processed.

C H A P T E R 6 F O R M C O N T R O L T O O L S

370 G P P O W E R T O O L S

Form Control Setup Resources
The Form Control Setup Resources window is displayed when adding or
editing a Resource Filter. The fields enabled depend on the rule type
selected. The Rule Sequence number, Rule Description and Resource
Sequence are displayed at the top of the window.

The Base Settings which exist for every Form Control ID have a Rule Sequence of
zero and cannot be reordered. Window and Field settings are not available for the
Base Settings Resource Filter.

The first Resource Filter for each rule has a Resource Sequence of 1 and cannot be
deleted or reordered and cannot be marked to Exclude Resources.

The following is a description of the individual fields on the window:

Exclude Resources
Select this checkbox to exclude any resources defined in the window
from the Resource Filter.

Allow Multiple Resources (OR mode)
Select this checkbox to allow more than one include Resource
selections. It must be selected for all the included resources for the
current rule which should be treated with OR logic.

All Product Dictionaries
Select this checkbox to select all product dictionaries for the filter.

 C H A P T E R 6 F O R M C O N T R O L T O O L S

 G P P O W E R T O O L S 371

Product Name
This drop down list is used to select a specific product dictionary
when All Product Dictionaries is unselected.

Alternate Mode
This field is used to select whether the current Form Control ID should
be enabled for both original and all alternate forms, or if it should only
be enabled when the form is in a specific product dictionary. Use
dictionary 0: Microsoft Dynamics GP for only the original form or
select the product dictionary which contains the desired alternate
form. This option is only available for the Base Settings Resource
Filter.

Modified Mode
This field is used to select whether the current Form Control ID should
be enabled for both original and modified forms, or if it should only be
enabled for original forms or for modified forms. This option is only
available for the Base Settings Resource Filter.

Form Mode
Use this drop down to select the search mode for Forms. The options
are All, Begins with, End with, Contains, Exact, Wildcard and None.
Once the search mode is selected, use the Form Name field to add the
search term.

Form Name
Enter the search term to use in conjunction with the Form Mode to
specify the search filter. For Wildcard mode use an asterisk (*) to
represent multiple characters and a question mark (?) to represent a
single character.

Window Mode
Use this drop down to select the search mode for Windows. The
options are All, Begins with, End with, Contains, Exact, Wildcard and
None. Once the search mode is selected, use the Window Name field
to add the search term.

Window Position
This field can be used to limit the windows with a form that the
Resource Filter is applied to. Leave as zero for all. Use 1 to limit to the
first or main window on a form.

Window Name
Enter the search term to use in conjunction with the Window Mode to
specify the search filter. For Wildcard mode use an asterisk (*) to
represent multiple characters and a question mark (?) to represent a
single character.

Field Mode
Use this drop down to select the search mode for Fields. The options
are All, Begins with, End with, Contains, Exact, Wildcard and None.
Once the search mode is selected, use the Field Name field to add the
search term.

C H A P T E R 6 F O R M C O N T R O L T O O L S

372 G P P O W E R T O O L S

Field Position
This field can be used to limit the fields with a window that the
Resource Filter is applied to. Leave as zero for all.

Field Name
Enter the search term to use in conjunction with the Field Mode to
specify the search filter. For Wildcard mode use an asterisk (*) to
represent multiple characters and a question mark (?) to represent a
single character.

Include Modifier Added Fields
Select this checkbox if fields added with Modifier to modified
windows should be included within the Resource Filter.

 C H A P T E R 6 F O R M C O N T R O L T O O L S

 G P P O W E R T O O L S 373

Password Setup

You can open the Password Setup window by selecting Password Setup
from the Cards section of the GP Power Tools Area Page or by selecting
Password Setup from the Options button drop list on the main window.
This is an Advanced Mode feature.

When using the browse buttons on this window when the sort by drop
down list is set to by Project ID, there will be a soft limit at the first and
last record within a project. Clicking the browse button a second time will
move past the soft limit.

The following is a description of the individual fields on the window:

Password ID
This field contains a unique identifier for each Password in the system.
The lookup button can be clicked to select from existing password IDs.
The lookup will be filtered to the current project if the password
belongs to a project.

C H A P T E R 6 F O R M C O N T R O L T O O L S

374 G P P O W E R T O O L S

The Notes Button can be clicked to enter Release Notes. Use the
Timestamp Button to add a timestamp to the bottom of the release
notes.

Note that the Password IDs starting with the prefix character of tilde (~) are
reserved for use by Microsoft Support.

Password Information
Click this button to display what resources are using this password.

 C H A P T E R 6 F O R M C O N T R O L T O O L S

 G P P O W E R T O O L S 375

Password Name
This field contains a description of the password.

Disabled
Use this checkbox to disable the password. If disabled, the password
request will be successful without opening any dialogs.

Project ID
Use this field to add the current password to a development project.

Password
Enter the password to be used in this field. By default, it will not be
displayed.

Show Password
Use this checkbox to show the password characters being entered.

Allowed Attempts
Specify how many attempts to enter the password are allowed before
being rejected.

Case Insensitive
Use this checkbox to specify that case for the password characters is
not important, if desired.

Prompt List
This scrolling window is where you can enter the prompts and
messages used for each language. If there are no prompts for a
particular language, the prompts for the default language will be used
instead.

C H A P T E R 6 F O R M C O N T R O L T O O L S

376 G P P O W E R T O O L S

The following is a description of the additional buttons on the window:

Duplicate Button
Use this button to duplicate or rename the current Password ID to a
new Password ID. This is useful when an existing password ID is
very similar to the new one you want to create.

A new password ID must be specified in the dialog which opens.

Users Button
Use this button to specify which users and companies the password
should be active for. Once clicked Password Enabled for Users
window will open.

You can view this window by users or by companies and navigate the
tree to select the user and company combinations as required. You can
also select by User Classes, Security Roles, Security Tasks and Security
Modified Alternate IDs.

If all users are selected on the tree, the tree selections will be cleared and the
mode will change from Selected Users and Companies to All Users and
Companies. If no users are selected on the tree, the mode will change to All
Users and Companies. A red visual cue will be displayed if there are user
settings present.

 C H A P T E R 6 F O R M C O N T R O L T O O L S

 G P P O W E R T O O L S 377

The Exclude Selected Users and Companies rather than include them
option allows you to invert the behavior of the window. This is handy
when it is easier to specify the users and companies for whom the
password should not be active for.

Test Button
Use this button to display a test of the password dialog and display
the results afterwards.

The following is a description of the Options menu available for the
window:

Save and Continue
Use this menu option to save the current password without clearing
the window. Control-S can be used as a shortcut.

C H A P T E R 6 F O R M C O N T R O L T O O L S

378 G P P O W E R T O O L S

Form Control Status

You can open the Form Control Status window by selecting Form Control
Status from the Inquiry section of the GP Power Tools Area Page or by
selecting Form Control Status from the Options button drop list on the
main window. This is an Advanced Mode feature.

The Form Control Status window is used to see what triggers have been
registered to implement the form control functionality.

The following is a description of the individual fields on the window:

Form Control Tree
This tree shows the currently active Form Control IDs and which
forms in which dictionaries they are active for.

Trigger List
This list shows the form control triggers registered for the selected
Form Control ID and dictionary form.

The following is a description of the additional buttons on the window:

Redisplay Button
Use this button to redisplay the data on the window. The data in the
window is also redisplayed automatically when a new form or Form
Control ID is added.

Unregister Button
Use this button to Unregister triggers for a Form Control ID and form,
for all forms for a Form Control ID or for all Form Control IDs.
Unregistered triggers will be registered again next time the form is
opened.

 C H A P T E R 6 F O R M C O N T R O L T O O L S

 G P P O W E R T O O L S 379

Form Control Resources

You can open the Form Control Resources window by selecting Form
Control Resources from the Inquiry section of the GP Power Tools Area
Page or by selecting Form Control Resources from the Options button
drop list on the main window. This is an Advanced Mode feature.

The Form Control Resources window is used to show the form, window
and field resources cached by form control for the current user and
company. Entering a Form Control ID and Rule Sequence number will
filter the displayed data to only show the resources that meet the resource
filtering settings for the selected Form Control ID and rule.

The following is a description of the individual fields on the window:

Form Control ID
This field can be used to filter the resources in the Form Control
Resource Tree and Form Control Resource List to only show resources
that meet the resource filter for the selected Form Control ID and Rule.

Rule Sequence
This field can be used to filter the resources in the Form Control
Resource Tree and Form Control Resource List to only show resources
that meet the resource filter for the selected Form Control ID and Rule.

When the filter is applied, the contents of the Resource Tree and
Resource List are limited to only those resources that meet the filters
for the selected Form Control ID and rule.

C H A P T E R 6 F O R M C O N T R O L T O O L S

380 G P P O W E R T O O L S

Form Control Resource Tree
This tree displays the dictionary, form and window information for
the cached forms for the current user and company.

Form Control Resource List
This list displays the form, window and field information for the
cached forms for the current user and company. Fields added by
Modified or Alternate windows will use an icon with a blue or red
pencil overlay (respectively).

The following is a description of the additional buttons on the window:

Clear Button
Use this button to clear the Form Control ID and Rule Sequence filter
and redisplay the unfiltered resources.

Redisplay Button
Use this button to redisplay the resources on the window. The
resources in the window are also redisplayed automatically when a
new form is added.

Exclude Button
Use this button exclude the currently selected resource from the Form
Control ID and Rule. This button is only available when a Form
Control ID and Rule have been entered to filter the resources
displayed.

 C H A P T E R 6 F O R M C O N T R O L T O O L S

 G P P O W E R T O O L S 381

The following is a description of the Options menu available for the
window:

Reset Resource Data
Use this menu option to remove all the cached resources for the
current user and company. This will close all open windows and clear
the cache tables. Forms will be added back to the cache as they are
next opened.

The resources stored in the cache tables MBS_WindowControl_Form_TEMP
(WPT50501) and MBS_WindowControl_Resource_TEMP (WPT50500) are
automatically maintained by GP Power Tools. If the dictionary version changes,
or the data has not been used for 30 days, the resources are removed and will be re-
read on demand. Modified resources are removed when exiting Microsoft
Dynamics GP to force them to be re-read on demand each session in case they
have changed.

382 G P P O W E R T O O L S

 Chapter 7: Database Tools Features

This chapter includes the following sections:

• XML Table Export*
• XML Table Import*
• Database Validation*
• SQL Login Maintenance*
• Password Reset Email Settings*
• Copy User Settings*
• SQL Trigger Control*
• Note Fix Utility*
• Database Space Recovery*
• Additional Database Features

* Advanced Mode Feature

 C H A P T E R 7 D A T A B A S E T O O L S

 G P P O W E R T O O L S 383

XML Table Export

You can open the XML Table Export window by selecting XML Table
Import from the Utilities section of the GP Power Tools Area Page or by
selecting Database >> XML Table Export from the Options button drop list
on the main window. This is an Advanced Mode feature.

The XML Table Export window can be used to copy the contents of one or
more tables residing in any product into an XML file. All tables selected
will be exported into the single XML file listed on the Export Path.

Using separate Profile IDs allows multiple sets of tables to be stored for
related groups.

The following is a description of the individual fields on the window:

Profile ID
This field contains a unique identifier for each XML Table Export
profile in the system. The lookup button can be clicked to select from
existing profile IDs.

C H A P T E R 7 D A T A B A S E T O O L S

384 G P P O W E R T O O L S

Note that the Profile IDs starting with the prefix character of tilde (~) are
reserved for use by Microsoft Support.

Profile Name
This field contains a description for the XML Table Export profile.

Table List
Select the tables you want to export and add them to the list. You can
use the lookup or manually enter the Table Technical Name or Table
Physical Name fields.

Export Path
This field contains the path of the file name to which the tables will be
export as XML.

The following is a description of the additional buttons on the window:

Duplicate Button
Use this button to duplicate the current profile ID to a new profile ID.
This is useful when an existing profile ID is very similar to the new
one you want to create.

A new profile ID must be specified in the dialog which opens.

Export Button
Use this button to export the data to the file named in the Export Path
field.

 C H A P T E R 7 D A T A B A S E T O O L S

 G P P O W E R T O O L S 385

For each table specified in the scrolling window section of this window,
you can specify an Optional SQL Where Clause Clause to restrict the
records export for that table.

XML Table Export can be used to obtain a customer’s data for specific tables
without requiring a full SQL database backup. Just select the tables for which you
need the data and click OK to save the selection. Then use the Configuration
Export/Import window to export the setting file to send to the customer. The
customer can then import the settings and use the XML Export window to export
the desired tables.

During the export or import process, the following progress window will
be displayed.

XML Table Export can be used to backup data before running test scenarios so the
data can be restored afterwards to allow the scenarios to be run again with the
same initial data.

There is no data validation or business logic checking when data is imported using
XML Table Import. This is similar to the Dexterity Table Import Utility. It is
best to ensure that all related tables are exported by XML Table Export.

If both the XML Table Export window and XML Table Import window are open,
the import path will default to the export path from the XML Table Export
window.

C H A P T E R 7 D A T A B A S E T O O L S

386 G P P O W E R T O O L S

From the Options menu, you can open the built in Table Export tool if you
want to export data as a text file.

 C H A P T E R 7 D A T A B A S E T O O L S

 G P P O W E R T O O L S 387

XML Table Import

You can open the XML Table Import window by selecting XML Table
Import from the Utilities section of the GP Power Tools Area Page or by
selecting Database >> XML Table Import from the Options button drop
list on the main window. This is an Advanced Mode feature.

The XML Table Import window can be used to import the contents of a
number of tables from an XML file previously exported by the XML Table
Export window.

Select the XML file as the Import Path. The tables contained in the file will
be listed.

Select the tables you want to import and then click Import to start
importing.

When importing data into tables it is possible that the tables already contain data
and that duplicate records may occur. XML Table Import has overwrite options
to handle this situation.

C H A P T E R 7 D A T A B A S E T O O L S

388 G P P O W E R T O O L S

The following Overwrite options are available:

Overwrite Table Contents
Checking this option will cause the original contents of the table to be
deleted prior to importing the XML file. None of the original data will
be kept.

Overwrite Duplicate Records
Checking this option will allow XML Table Import to overwrite a
duplicate record with the data from the XML file. If this option is not
checked and a duplicate occurs, the data from the XML file will be
ignored and a duplicate record error logged.

During the export or import process, the progress window will be
displayed.

XML Table Import can be used to restore data from backups you made before
running test scenarios. This allows the scenarios to be run again with the same
initial data.

There is no data validation or business logic checking when data is imported using
XML Table Import. This is similar to the Dexterity Table Import Utility. It is
best to ensure that all related tables are exported by XML Table Export.

If both the XML Table Export window and XML Table Import window are open,
the import path will default to the export path from the XML Table Export
window.

From the Options menu, you can open the built in Table Import tool if you
want to import data from a text file, without any validation or business
logic.

 C H A P T E R 7 D A T A B A S E T O O L S

 G P P O W E R T O O L S 389

Database Validation

Please make sure you review the Using Database Validation section for the
steps to use this window.

You can open the Database Validation window by selecting Database
Validation from the Utilities section of the GP Power Tools Area Page or
by selecting Database >> Database Validation from the Options button
drop list on the main window. This is an Advanced Mode feature.

The Database Validation window is designed to perform a number of
system checks to ensure that your SQL Server settings and databases
correctly match what is expected by Microsoft Dynamics GP. If any issues
are found, the Database Validation will provide options to resolve them.

Running Database Validation before upgrading or after copying databases
between SQL Servers can resolve any potential issues before they occur.

Before the window opens you will be reminded to ensure that all users are
logged out and that your company and system databases have been
backed up before executing any of the fixing functionality.

Running the Database Validation checks to identify issues is read-only and does
not require backups or exclusive use of the system.

Before the window opens the system will check if you have the
dictionaries for all products installed. If not, the following dialogs will be
displayed with the details of the missing products. This is to ensure that
all dictionaries are present when comparing SQL Server tables to tables in
the dictionaries.

C H A P T E R 7 D A T A B A S E T O O L S

390 G P P O W E R T O O L S

When the window first opens, Database Validation performs its first series
of checks.

Users and Databases:

• Confirm that the ‘DYNSA’ SQL Server Login exists

• Confirm that ‘DYNSA’ is assigned as dbo for the SQL Databases

• Confirm that the ‘DYNSA’ GP User ID exists

• Confirm that ‘DYNSA’ is assigned access to all GP Companies

• Confirm that ‘sa’ is assigned access to all GP Companies

• Identify GP Companies for which there is no SQL Database

• Identify GP User IDs for which there is no SQL Login

• Identify GP Users for not assigned to the DYNGRP SQL Role

• Identify Company Access records for missing Users or Companies

• Identify missing Database Users as per Company Access records

Dynamics GP Utilities:

Using the records in DB_Upgrade and DU00020 tables in the System
database.

• Identify records for companies that are not installed

• Identify records for product dictionaries that are not installed

Account Framework:

• Identify Account Framework from Application Dictionary

• Identify Account Framework from setup tables in System Database

• Identify Account Framework from GL_Account_MSTR (GL00100)
table in each Company Database

 C H A P T E R 7 D A T A B A S E T O O L S

 G P P O W E R T O O L S 391

The results of the checks are then displayed when the window opens.

Please note that this screenshot is intentionally showing errors. A system with no
errors will have green ticks next to all of the users, companies and databases
shown in the top left and top right panes. See the final screenshot at the end of the
Using Database Validation section below.

The following is a description of the individual fields on the window:

OK Button
This button closes the window, saving the list of Exempted tables.

Redisplay Button
This button restarts Datsabase Validation window and re-runs the
initial checks listed above.

Process Button
When this button is pressed, Database Validation reads all the table
definitions from the installed Dexterity product dictionaries. It then
reads the tables and views from the selected SQL Server databases and
identifies which tables and views exist in both SQL Server and the
product dictionaries and those only found in one location.

C H A P T E R 7 D A T A B A S E T O O L S

392 G P P O W E R T O O L S

To avoid Database Validation incorrectly classifying tables or views as
missing, please ensure that the workstation used to run Database Validation
has all installed product dictionaries installed.

Validate Button
When this button is pressed, Database Validation will compare the
data structures for tables in the selected database tables against the
matching table definitions in the product dictionaries and identify any
differences.

Running the Validation process can take a while to run as it has to compare
the data structures for all the selected tables in multiple databases. This
process runs in the foreground and you will not be able to perform other tasks
while it is running.

Add Exemption Button
This button is enabled when one or more missing tables or views are
selected. It can be used to quickly add tables and/or views to the
Exemptions list.

 C H A P T E R 7 D A T A B A S E T O O L S

 G P P O W E R T O O L S 393

Remove Exemption Button
This button is enabled when one or more exempt tables or views are
selected. It can be used to quickly remove tables and/or views from
the Exemptions list.

Exemptions Button
This button opens the Database Validation Exemptions window so
that manual changes can be made to the Exemptions list.

The Exemptions list is populated with some known tables and views
automatically, but you can manually add additional tables and views
which will then be excluded from the validation process.

Exemption Mode can be from the System Database, All Company
Databases or for Specified Company Database. Object Mode can be
Dexterity Objects or SQL Objects and the View Mode can be Table or
View. When specifying a Dexterity Object, you can select the object by
entering its physical name or by selecting the Product Name and
entering the Technical Name.

To remove entries from the Exemptions list, you can remove
individual lines, or select a number of lines and Remove Selected or
Remove All.

C H A P T E R 7 D A T A B A S E T O O L S

394 G P P O W E R T O O L S

Legend Button
This button opens the Database Validation Legend window which
explains the various icons and indicators used by Database Validation.

Print Button
This button opens the Print Report window where you can select what
information to include on the printed report.

 C H A P T E R 7 D A T A B A S E T O O L S

 G P P O W E R T O O L S 395

Fix Users Button
This button opens the Fix Users and Databases window. The various
sections of this window will only be enabled if there are errors for that
section to be resolved. To the left of the top two panes on the window
are Mark All and Mark None buttons which can be used to quickly
change the checkbox selections in that pane. If more than one item is
highlighted, Mark All and Mark None will be applied to the
highlighted items.

The Edit button can be used to open the Password Reset Email
Settings window to edit the email sent when resetting passwords.

Password Reset Emails can be sent automatically when Database Validation
knows the User’s email address. Use the User Setup Additional Information
window to enter this and other user related data.

Use the Use Password Hash File where possible option to use the
same passwords for each user based on a previously exported
Password Hash File.

The Password Hash File method of restoring the same passwords for users
will only work if the new SQL Server machine has been given the same name
as the old SQL Server machine. If the SQL Server’s machine name has
changed, Microsoft Dynamics GP’s password encryption algorithm means
that the passwords will not work.

C H A P T E R 7 D A T A B A S E T O O L S

396 G P P O W E R T O O L S

The Password Hash File can be exported with Database Validation on
the old server using Options >> Capture Password Hash File menu.

The Process Button will be enabled if any fixing options have been
selected. Click the Process Button to fix the selected issues.

Fix Utilities Button
This button opens the Fix Utilities window.

The Process Button will be enabled if any fixing options have been
selected. Click the Process Button to fix the issues found.

 C H A P T E R 7 D A T A B A S E T O O L S

 G P P O W E R T O O L S 397

Fix Framework Button
This button opens the Fix Account Framework window.

The Process Button will be enabled if any fixing options have been
selected. Click the Process Button to fix the issues found.

Use the Edit Framework Button to edit the System Database Account
Framework. This option can be used to change the Account
Framework.

After editing the Account Framework, you will need to Synchronize
DYNAMICS.DIC to match the settings in the System Database. Then
Processing and Fixing Tables can used to adjust table structures.

C H A P T E R 7 D A T A B A S E T O O L S

398 G P P O W E R T O O L S

Fix Tables Button
This button opens the Fix Tables window. The various sections of this
window will only be enabled if there are errors for that section to be
resolved.

The table errors are divided into four sections:

• Empty tables with incorrect Structure Errors. These tables
can be dropped and recreated without needing to consider
any existing data.

• Empty SQL Tables missing from Dexterity dictionaries.
These tables can possibly be removed as they have no data
and appear not to be used. They could be from a product that
was installed and never used and has since been removed.

• Tables containing data with incorrect Structure Errors which
can be upgraded with Dynamics GP Utilities. These are
tables with date that have structure errors, however there is a
conversion available via Dynamics GP Utilities. You should
attempt to upgrade with Dynamics GP Utilities first as this
should perform the proper conversion steps and might update
data as part of the upgrade.

The Override to Convert Table Structures without using Dynamics Utilities
option should be used with caution as it will bypass any additional
conversion steps that might have been performed by Dynamics GP Utilities.

• Tables containing data with incorrect Structure Errors which
cannot be upgraded with Dynamics GP Utilities. These are
tables with data that have structure errors, but there is no
Dynamics GP Utilities conversion available. You can use
Database Validation to automatically backup the data, drop
and recreate the tables and restore the data.

 C H A P T E R 7 D A T A B A S E T O O L S

 G P P O W E R T O O L S 399

To the left of each pane on the window is a Mark All and Mark None
button which can be used to quickly change the checkbox selections of
the tables in that pane. If more than one item is highlighted, Mark All
and Mark None will be applied to the highlighted items.

Ensure you have a backup of all Microsoft Dynamics GP databases before
running the Fix Tables process. If you are unsure about running any Fix
Tables process, please contact your support consultants to discuss.

C H A P T E R 7 D A T A B A S E T O O L S

400 G P P O W E R T O O L S

The Process Button will be enabled if any fixing options have been
selected. Click the Process Button to fix the selected issues.

After running the Fix Tables process, it is recommended to run the Database
Maintenance Utility (DBMaintenance.exe) to update or create any additional
SQL Server resources.

Only include SQL Table & Views which have a DEX_ROW_ID
column
This option limits the SQL Tables and Views reviewed to only include
ones that include a DEX_ROW_ID column. Keeping this option
selected prevents Database Validation looking at additional SQL
objects that are not used with Dexterity product dictionaries.

Only Show Tables with Account Fields
This option filters the scrolling window to only include tables which
include an Account Number field. This is useful when looking for
tables with Account Framework issues.

 C H A P T E R 7 D A T A B A S E T O O L S

 G P P O W E R T O O L S 401

Show Structure Errors Button
This button opens the Table Structure Errors window. This window
details the database structure errors for the selected table.

Click OK to close the window.

C H A P T E R 7 D A T A B A S E T O O L S

402 G P P O W E R T O O L S

The Database Validation window has an Options Menu which can be used to
Reset User SQL Logins and Passwords. This option can be used for force a reset of
selected users’ or all users’ passwords by removing their SQL Logins and
allowing Database Validation to recreate them. It will not remove the SQL Login
for any users currently logged into the system.

If you wish to reset user passwords, view or change password policy
settings or change a user’s status, you might find the SQL Login
Maintenance window a better approach as it does not remove the SQL
Login and require it to be recreated. See the next section for more
information.

The Mark All and Mark None buttons can be used to quickly change the
checkbox selections of users. If more than one item is highlighted, Mark
All and Mark None will be applied to the highlighted items.

 C H A P T E R 7 D A T A B A S E T O O L S

 G P P O W E R T O O L S 403

Using Database Validation
The following section explains the process of using Database Validation on
your system.

1. Backup all system and company SQL Server databases.

2. Ensure that no other users are logged in.

3. Ensure that all Dexterity product dictionaries are installed on
the current workstation.

4. After Database Validation has performed its initial checks, the
window will open and display what issues it has found.

5. Use the Fix Users and Databases window to resolve any issues
with Users and Databases. The window will refresh after the
process.

6. Use the Fix Utilities window to resolve any issues with the data
in the Dynamics GP Utilities version tables. The window will
refresh after the process.

7. Use the Fix Account Framework window to resolve any issues
with the data Account Framework in the system. The window
will refresh after the process.

C H A P T E R 7 D A T A B A S E T O O L S

404 G P P O W E R T O O L S

8. Once all these issues are fixed, the Database Validation window
show now display with no errors.

9. Click Process to read the tables and views from all Dexterity
product dictionaries installed and match them to the tables and
views in the selected SQL Server system database and company
databases in the top right-hand pane.

10. Once the processing has completed, you can explore the tree in
the top right pane and see what tables and views have been
found to exist in both the Dexterity product dictionaries and the
SQL Server databases. The scrolling window in the bottom half
of the window will display the tables depending on the node
selected in the top right pane.

11. You can select Missing tables and views and add them to the
Exemptions using the Add Exemptions button, so they don’t
show as missing next time.

 C H A P T E R 7 D A T A B A S E T O O L S

 G P P O W E R T O O L S 405

12. You can select all or some of the Found Tables in the databases.
The selection can be made my clicking on the node checkboxes
or by selecting a node and then clicking on the tables in the
scrolling window. Clicking on the node checkboxes in the tree
can be used to mark all or mark none.

13. Click Validate to compare the table structures for the selected
tables found in both Dexterity product dictionaries and SQL
Server databases. This process can take some time depending on
how many tables are being checked. It runs multiple passes to
complete the process.

C H A P T E R 7 D A T A B A S E T O O L S

406 G P P O W E R T O O L S

14. After the Validation process is complete, an optional report can
be printed to show the results. You can use the tree to explore
the results and show the tables which have been identified as
Structure Incorrect.

15. If you wish to see the detail of the Structure Errors, select the
individual table in the scrolling window and click the Show
Structure Errors button.

 C H A P T E R 7 D A T A B A S E T O O L S

 G P P O W E R T O O L S 407

16. Use the Fix Tables window to resolve any issues with Tables.
The window will refresh after the process.

C H A P T E R 7 D A T A B A S E T O O L S

408 G P P O W E R T O O L S

17. When closing the Database Validation window, print or save the
Database Validation Log report generated with all the actions
processed by Database Validation.

18. Exit Dynamics GP and run the Database Maintenance utility
against all system and company databases.

19. Make a second backup of all system and company SQL Server
databases of your validated system.

 C H A P T E R 7 D A T A B A S E T O O L S

 G P P O W E R T O O L S 409

SQL Login Maintenance

You can open the SQL Login Maintenance window by selecting SQL Login
Maintenance from the Utilities section of the GP Power Tools Area Page or
by selecting Database >> SQL Login Maintenance from the Options button
drop list on the main window. This is an Advanced Mode feature.

The SQL Login Maintenance window is designed to provide a simple
method to reset user passwords, view or change password policy settings
or make users inactive or active for multiple users at one time.

The Database Validation has an option to Reset User SQL Logins and Passwords.
Using the SQL Login Maintenance window instead resets the password without
removing and recreating SQL Logins. If there is a problem with the SQL Login
you can use Database Validation to fix it before using SQL Login Maintenance.

The following is a description of the individual fields on the window:

User List
This list shows all the users in the system with their current status and
password policy settings. Double clicking on a user will open User
Setup for the selected user. From the User Setup window, you can
check the User Setup Additional Information window and ensure the
User Email Address is populated. Use the checkboxes to select the
users you wish to apply any changes to.

Send Password changed emails
When this checkbox is selected, SQL Login Maintenance will send
emails to users when resetting their password as long as the User
Email Address is populated for the user in the User Setup Additional
Information window.

C H A P T E R 7 D A T A B A S E T O O L S

410 G P P O W E R T O O L S

The Edit button can be used to open the Password Reset Email
Settings window to edit the email sent when resetting passwords.

Password Reset Emails can be sent automatically when SQL Login
Maintenance knows the User’s email address. Use the User Setup Additional
Information window to enter this and other user related data.

Reset User Passwords
Select this checkbox if you want to reset the passwords for the selected
users.

Automatically Generate Passwords
Select this checkbox if you want GP Power Tools to generate
individual passwords for each user.

User Password
If not generating passwords, use this field to enter a single password
to user for all users.

Apply Advanced SQL Server options
Select this checkbox if you want to change Advanced SQL Server
options for the selected users.

Enforce Password Policy
Select this checkbox to update users to enable the system’s password
policies.

Enforce Password Expiration
Select this checkbox to update users to enable the password expiration
policy.

Change Password Next Login
Select this checkbox to force users to change their password on next
login. This option can only be used when resetting passwords.

Apply User Status
Select this checkbox if you want to change User Status settings for the
selected users.

User Status
Use this drop down list to select if users should be marked Active,
Inactive or as Lesson Users.

The following is a description of the additional buttons on the window:

Cancel Button
This button closes the window without taking any further actions.

Apply Button
This button will apply the selected setting changes to the selected
users.

Redisplay Button
This button will refresh the window with the current users and their
settings.

 C H A P T E R 7 D A T A B A S E T O O L S

 G P P O W E R T O O L S 411

Mark All Button
Use this button to mark all the users (or all highlighted users) which
can be updated.

Unmark All Button
Use this button to unmark all the users (or all highlighted users) which
can be updated.

C H A P T E R 7 D A T A B A S E T O O L S

412 G P P O W E R T O O L S

Password Reset Email Settings

You can open the Password Reset Email Settings window by selecting
Password Reset Email Settings from the Utilities section of the GP Power
Tools Area Page or by selecting Database >> Password Reset Email
Settings from the Options button drop list on the main window. This is an
Advanced Mode feature.

The Password Reset Email Settings window controls the settings for
sending emails when passwords are reset from the Database Validation,
SQL Login Maintenance or User Setup windows.

The following is a description of the individual fields on the window:

Send SQL Login Password reset emails
This checkbox enables sending of emails when passwords are reset if a
user’s email address or CC email address has been entered.

Password Reset Emails can be sent automatically when the User’s email
address is known. Use the User Setup Additional Information window to
enter this and other user related data.

CC Address
This field contains the email address used when sending emails. If the
CC address has been entered, but there is no user email address
available, the email will just be sent to the CC address.

Subject
This field contains the subject line to be used when sending emails.

Body
This field contains the body text to be used when sending emails. Use
the placeholder %1 for the password and %2 for the User ID.

 C H A P T E R 7 D A T A B A S E T O O L S

 G P P O W E R T O O L S 413

Default Button
Use this button to restore the default Subject and Body settings.

C H A P T E R 7 D A T A B A S E T O O L S

414 G P P O W E R T O O L S

Copy User Settings

You can open the Copy User Settings window by selecting Copy User
Settings from the Utilities section of the GP Power Tools Area Page or by
selecting Database >> Copy User Settings from the Options button drop
list on the main window. This is an Advanced Mode feature.

The Copy User Settings window allows copying of user settings in the
system database from a source User ID to a target User ID. All tables
containing the User ID field are listed in the left-hand pane and all tables
containing both the User ID and Company ID fields are listed in the right-
hand pane.

Use this window after creating a new user to transfer all system settings
(including any 3rd party products) from an existing user to the newly
created user.

The following is a description of the individual fields on the window:

Source User ID
Select the source User ID to copy the user records from.

Target User ID
Select the target User ID to receive the copied records.

Preview with Field Names
This checkbox controls if the Dexterity Technical Names or SQL
Physical Names are used as the column headers when previewing
data.

 C H A P T E R 7 D A T A B A S E T O O L S

 G P P O W E R T O O L S 415

Hide Excluded Tables
This checkbox controls whether the excluded tables are shown in the
table lists. When the excluded tables are not hidden, the Toggle
Exclusion Button is shown to allow the excluded tables to changed.
This field defaults to selected to hide the excluded tables and the
Toggle Exclusion Button.

Filter Empty Tables
This option will hide empty tables from the table lists as there is no
data to copy. When a Source User ID has been entered, this option is
turned on to hide any tables with no data for the Source User ID.

System Tables with User ID column
This table list shows the tables from the system database which
contain the User ID field.

System Tables with User ID & Company ID column
This table list shows the tables from the system database which
contain the User ID and Company ID fields.

The following is a description of the additional buttons on the window:

Process Button
Click this button to start the copy user settings process. If source and
target users are entered the following dialog will be displayed to
control how the copy process will proceed.

• Overwrite: Copy all settings from source user to target user
overwriting any existing records. Records in the target user
but not in the source user will remain.

• Insert: Insert missing settings from source user to target user.
Existing records on the target user will be unchanged.

• Replace: Copy all settings from source user to target user
replacing any existing records. Records in the target user but
not in the source user will be removed.

Clear Button
Use this button to reset the window back to default settings.

C H A P T E R 7 D A T A B A S E T O O L S

416 G P P O W E R T O O L S

Preview Data Button
This button will open the SQL Execute Setup window to preview the
data for the selected fields in the SQL table. The Preview with Field
Names option controls if the Dexterity Technical Names or SQL
Physical Names are used as the column headers.

Previewing data uses the SQL Execute Setup window to display the data and
so needs the Developer Tools module registered.

Redisplay Button
Use this button refresh the table lists.

Toggle Exclusion Button
Use this button to turn on and off exclusion of the selected table. This
button and the excluded tables will be hidden if the Hide Excluded
Tables checkbox is selected.

Mark All Buttons
Use this button to mark all of the tables (or all highlighted tables) in
the table list.

Unmark All Buttons
Use this button to unmark all of the tables (or all highlighted tables) in
the table list.

 C H A P T E R 7 D A T A B A S E T O O L S

 G P P O W E R T O O L S 417

SQL Trigger Control

You can open the SQL Trigger Control window by selecting SQL Trigger
Control from the Utilities section of the GP Power Tools Area Page or by
selecting Database >> SQL Trigger Control from the Options button drop
list on the main window. This is an Advanced Mode feature.

The SQL Trigger Control window is used to disable, enable and delete
SQL table triggers for troubleshooting or system maintenance purposes. It
can be used cleanup after a customization using SQL triggers is removed
and does not uninstall correctly.

The following is a description of the individual fields on the window:

Database Tree
The left-hand pane displays the databases in the system either by
database name or by company name.

Trigger List
The middle pane displays the SQL table triggers for the selected
database. Scroll to the right to see additional information about the
triggers. This list can be filtered to remove the Dexterity Timestamp
triggers using the Filter to exclude Timestamp Triggers checkbox.

You can multi-select triggers in the Trigger List using the control and shift
keys. The Mark All and Unmark All buttons will mark and unmark just the
selected triggers when more than one trigger is selected.

Trigger Definition
When a single trigger is selected, the definition for the trigger is shown
in the right-hand pane.

C H A P T E R 7 D A T A B A S E T O O L S

418 G P P O W E R T O O L S

Filter to exclude Timestamp Triggers
Select this checkbox to hide the Dexterity Timestamp triggers from the
Trigger List.

The following is a description of the additional buttons on the window:

Disable Triggers Button
Use this button to disable the marked triggers.

Enable Triggers Button
Use this button to enable the marked triggers.

Delete Disabled Triggers Button
Use this button to delete the marked disabled triggers. Triggers must
be disabled before they can be deleted.

Mark All Button
Use this to mark all the triggers or if more than one trigger is selected,
it will mark the selected triggers.

Unmark All Button
Use this to unmark all the triggers or if more than one trigger is
selected, it will unmark the selected triggers.

 C H A P T E R 7 D A T A B A S E T O O L S

 G P P O W E R T O O L S 419

Note Fix Utility

You can open the Note Fix Utility window by selecting Note Fix Utility
from the Utilities section of the GP Power Tools Area Page or by selecting
Database >> Note Fix Utility from the Options button drop list on the
main window. This is an Advanced Mode feature.

The Note Fix Utility window is used to identify and fix issues with Record
Note and the Note Index values used to link setup, cards and transaction
records to the Record Note Master (SY03900) table. Issues can include:

• The Company’s Next Note Index stored in the Company Master
(SY01500) table in the system database is lower than the
maximum used Note Index in the company. Often caused by
restoring Databases separately.

• Zero Value Note Indexes where records have no Note Index
value assigned to them. Often caused by importing data and not
assigning the Next Note Index.

• Duplicate Note Indexes where the same Note Index has been
given to more than one record in the system. Often caused by
the Company’s Next Note Index being incorrect due to restoring
Databases separately.

• Used Duplicate Note Indexes where the same Note Index has
been given to more than one record in the system AND that note
has been used by one (or more) of those records. The result is
cross linked notes where the note shows up for multiple records
in the system.

• Note with no Note Index when there is a record in the Record
Note Master (SY03900) table with a zero value for the Note
Index column.

• Orphaned Notes where records in the Record Note Master
(SY03900) table cannot be matched with any other records in the
system. This could happen if an ISV product is using a different
field to store the Note Index or if data has been removed or
archives without removing the used Notes.

If Orphaned Notes are showing due to an ISV product using a different field to
store the Note Index values, this issue can be resolved by adding the appropriate
field to the Field list using the Edit Fields Button below.

Running the Note Fix Utility after restoring databases can resolve any
potential issues before they occur.

Before the window opens you will be reminded to ensure that all users are
logged out and that your company and system databases have been
backed up before executing any of the fixing functionality.

Running the Note Fix Utility checks to identify issues is read-only and does not
require backups or exclusive use of the system.

C H A P T E R 7 D A T A B A S E T O O L S

420 G P P O W E R T O O L S

When the window opens it will show the companies in the system with
the current company selected for processing. Once the processing has run,
you will be able to see if there are any issues that need to be resolved.

The following is a description of the individual fields on the window:

Company Tree
The top left-hand pane displays the companies in the system.

Note Index List
The bottom left-hand pane displays the Note Index values for the
selected issue node in the Company Tree.

Table List
The top right-hand pane displays the tables for the selected Note
Index value in the Node Index List.

 C H A P T E R 7 D A T A B A S E T O O L S

 G P P O W E R T O O L S 421

Record List
The middle right-hand pane displays SQL Table Record for the
selected Table Record in the Table List, for Used Duplicate Note
Indexes mode only.

Note Fields
The bottom right-hand pane displays the selected Note Index, along
with the last modified Date and Time and the Note text field contents.

Delete Button
The delete button can be used to manually delete the displayed note
record, for Used Duplicate Note Indexes and Orphaned Notes modes
only.

Display Records
This value is used to limit the amount of data displayed in the Note
Index List and Table List. If background processing is available, it will
be used when populating the lists and will allow up to the value of
this field times 100 records to be displayed. If background processing
is not available, foreground processing will be used to populate the
lists and will allow up to the value of this field records to be displayed.

Log Elapsed Times
This checkbox (on by default) will write log entries to the GP Power
Tools log for the current user and company with the Elapsed Times for
each step of the Process to read the data and each step required to fix
the Note Indexes.

The following is a description of the additional buttons on the window:

Process Button
Use this button to process the selected companies to identify if there
are Note Index issues that need to be resolved. This process can take
some time, at least 10 minutes, on a large system.

Once the user confirms to continue a processing window will be
displayed. If background processing is available, the cancel button will
be available to abort processing if desired.

C H A P T E R 7 D A T A B A S E T O O L S

422 G P P O W E R T O O L S

Fix Notes Button
Use this button to fix the selected issues. When the button is clicked
the number of records and tables to be fixed is displayed.

If Yes is selected there will be a final warning to ensure that databases
are backed up and other users are logged out. Once the user confirms
to continue a Fixing Note Indexes window will be displayed. If
background processing is available, the cancel button will be available
to abort processing if desired.

Edit Fields Button
Use this button to open the Note Fix Utility Fields window which can
be used to define the fields where Note Index values are stored.

 C H A P T E R 7 D A T A B A S E T O O L S

 G P P O W E R T O O L S 423

If the Note Index field is used to store a copy of a Note Index from another
table, you can specify the other table and Note Index field in that table as well
as the fields in both tables used to link the two tables together. Defining the
Linked Table prevents the copied Note Indexes showing up as Duplicates and
also ensures the copied value is updated if the original Note Index is changed.

Exclude Tables Button
Use this button to open the Note Fix Utility Tables window which can
be used to exclude tables from processing, defined grouped tables,
tables not used and define linked tables not linked already by the
Fields already defined.

If the Note Index field in a table is used to store a copy of a Note Index from
another table, you can specify the other table and Note Index field in that table
as well as the fields in both tables used to link the two tables together.
Defining the Linked Table prevents the copied Note Indexes showing up as
Duplicates and also ensures the copied value is updated if the original Note
Index is changed.

History tables can be excluded from the Zero Check as this is
unnecessary to assign a Note Index value to a transaction that is no
longer active. Table Fields that are currently not used in the
application can be marked as Not Used and excluded from all checks.

Grouped Tables can be used when a single Note Index is used on multiple
table records because all table records refer to a single transaction. For
example: the GL Transaction Open (GL20000) and GL Transaction History
(GL30000) tables only store the journal lines and not the journal header, so
all lines in a journal have the same Note Index. Using grouped tables prevents
the multiple records being identified as duplicates and ensures that if the Note
Index is updated, all the records in the group will be updated together.

C H A P T E R 7 D A T A B A S E T O O L S

424 G P P O W E R T O O L S

Redisplay Button
Use this button to reset the window so the companies can be
processed again. A warning is displayed if you will be clearing the
previously processed data to avoid accidental use of the button.

The following dialog is displayed if clicking on the Used Duplicate Note
Indexes node in the Company Tree to explain that with a used note, the
user must identify which is the correct record for that note. All other
records using that Note Index will be assigned a new Note Index.

 C H A P T E R 7 D A T A B A S E T O O L S

 G P P O W E R T O O L S 425

The following dialog is displayed if clicking on the Orphaned Note
Indexes node in the Company Tree to explain that before you delete all the
orphans, check if an ISV product is using a different field and update it
using the Edit Fields Button.

Mass Delete Button
Use this button to open the Note Fix Utility Mass Delete window,
which can be used to delete note records older than a specified date.
This can be a simpler solution to Duplicate and Orphaned Notes than
trying to identify where the notes actually belong.

C H A P T E R 7 D A T A B A S E T O O L S

426 G P P O W E R T O O L S

Database Space Recovery

You can open the Database Space Recovery window by selecting Database
Space Recovery from the Utilities section of the GP Power Tools Area Page
or by selecting Database >> Database Space Recovery from the Options
button drop list on the main window. This is an Advanced Mode feature.

The Database Space Recovery window is used to recover unused space
from SQL Heap type tables and, on SQL Server installations that support
compression, enable and disable Page Compression for SQL Heap type
and Clustered tables.

Tables in SQL Server can either be Clustered tables where one of the keys is
clustered, or Heap Tables where there is no clustered index. Records in a
Clustered table are stored in the order dictated by the clustered key and the table
records are shuffled as records are added and deleted. Records in a Heap table are
added at the end of the table when records are added and deleted records are
marked as deleted, but the unused space is not removed.

This tool removes the unused space created when records are deleted from
Heap tables. It can also apply Page Compression to both Heap tables and
Clustered tables on Enterprise and Azure SQL Server systems where
compression is available.

Compressed tables are shown with a small red down arrow:

 C H A P T E R 7 D A T A B A S E T O O L S

 G P P O W E R T O O L S 427

The following is a description of the individual fields on the window:

Table Type
This drop down list selects the type of table for the window to operate
on. The selection can be Heap Tables (tables without a clustered index)
or Clustered Tables (tables with a clustered index). If SQL
compression is not supported, this option will be disabled.

Database Tree
The left-hand pane displays the databases in the system.

Table List
The right-hand pane displays the tables with records for the selected
type and database.

Compression Mode
This drop down list selects if SQL Page Compression for the tables
should be left as is, enabled or disabled. If SQL compression is not
supported, this option will be disabled.

The following is a description of the additional buttons on the window:

Redisplay Button
Use this button to refresh the tables displayed and reset the processing
status.

Process Button
Use this button to process the selected tables in each of the databases.

After processing, the table cannot be re-selected. Use the Redisplay
Button to refresh the display and reset the table state. The statistics for
the database will be updated to show the amount of space recovered:

Mark All Button
Use this button to mark all the tables (or all highlighted tables) to
process.

Unmark All Button
Use this button to unmark all the tables (or all highlighted tables) to
process.

C H A P T E R 7 D A T A B A S E T O O L S

428 G P P O W E R T O O L S

For SQL Server Enterprise or Azure systems that support compression, the
decision to use compression or not and how it affects performance will depend on
each system. Using Compression increases the CPU workload as there is an
overhead to decompress the data after it has been read. If your Server is already
CPU bound, compression would not be recommended (but an upgrade would be).

Overall performance can be improved with compression enabled, as the time to
read uncompressed table data from the hard drive system can often still be longer
than the time to read the compressed data and decompress it. CPU times is many
factors faster than hard drive read and write times. The compressed data will also
speed up backups as less space is required.

Microsoft Dynamics GP tables compress extremely well and it is not uncommon
to see a 50% reduction is space. This is primarily because string fields in
Dexterity are stored as the fixed length CHAR(X) datatype and padded with
spaces. The first stage of SQL Compression will internally store all of these
CHAR(X) columns as VARCHAR(X), meaning that all the unused spaces at the
end of string fields, and the empty string fields, are removed from the stored data.

 C H A P T E R 7 D A T A B A S E T O O L S

 G P P O W E R T O O L S 429

Additional Database Features

GP Power Tools adds some extra features to help database administrators.
Below is a summary of the features:

Send Password Reset Emails
When resetting passwords on the User Setup window, if the Password
Reset Email is enabled, GP Power Tools will send an email to the user.
This can be configured on the Password Reset Email Settings window
available from the Additional menu.

Keep Table Data for SQL Maintenance
When dropping and recreating tables using the SQL Maintenance
window, GP Power Tools will offer to backup and restore table data if any
of the selected tables contain data.

Table Information for SQL Maintenance
GP Power Tools adds the table’s Physical Name, Dexterity Technical
Name and Number of records to the list of tables on the SQL Maintenance
window.

430 G P P O W E R T O O L S

 Chapter 8: Dex.ini Settings

GP Power Tools Settings

GP Power Tools uses the Dex.ini file to store a number of settings. The
default location for the Dex.ini file is in the data subfolder beneath the
Microsoft Dynamics GP application folder. These settings are explained
below:

MBS_Debug_Path
This setting can point to a location for the Debugger.xml setup file. The
default for this setting is missing, which means that the Debugger.xml file
will be stored in the data subfolder beneath the Microsoft Dynamics GP
application folder.

MBS_Debug_SetupMode
This setting can be TRUE or missing and denotes whether Setup Mode is
enabled. The default for this setting is missing, which means that Setup
Mode is not enabled.

MBS_Debug_AutoOpen
This setting can be TRUE or missing and denotes whether GP Power Tools
window should open automatically after logging into a company.

MBS_Debug_Version
This setting tracks the last used version of GP Power Tools on the current
workstation.

MBS_Debug_Install
This setting tracks the when GP Power Tools has been newly installed on
the current workstation.

WDC_InstallExclude
This setting tracks excluded launch files that will not be included on the
Additional Launch File Installer dialog.

MBS_Debug_LogOnStartup
This setting can be TRUE or missing and denotes whether to automatically
start logging when Microsoft Dynamics GP is next started. The default for
this setting is missing, which means that the feature is disabled.

MBS_Debug_RuntimeCheck
This setting can be FALSE or missing and denotes whether the Runtime
Engine version and build information is checked for compatibility. The
default for this setting is missing, which means that the version and build
will be checked.

 C H A P T E R 8 D E X . I N I S E T T I N G S

 G P P O W E R T O O L S 431

MBS_Debug_ShowRuntime
This setting can be TRUE or missing, and denotes whether the Runtime
Engine is shown when creating Dexterity sanScript scripts in either the
Trigger Setup window or the Runtime Execute Setup window. If this
setting is enabled, the Resource Explorer window and Table Explorer
window will also display resources from the Runtime Engine dictionary
DEX.DIC. The default for this setting is missing, which means the runtime
engine is not displayed.

MBS_Debug_ConfigurationOverride
This setting can be TRUE or missing, and denotes whether GP Power
Tools is allowed to automatically update Dex.ini Settings for this
workstation as defined in the Dex.ini Configuration window. Set to TRUE
to prevent any updates.

MBS_Debug_LaunchConfigurationOverride
This setting can be TRUE or missing, and denotes whether GP Power
Tools is allowed to automatically change the Launch File for this
workstation as defined in the Launch File Configuration window. Set to
TRUE to prevent any updates.

MBS_Debug_LogAppDetails
This setting can be TRUE or missing and denotes whether GP Power Tools
should log an entry into the GPPTools_<User>_<Company>.log file each
time a user logs into a company.

SQLLogRename
This setting can be used to automatically rename the DEXSQL.LOG file
each day. The value will be the date of the last rename in the form
YYYYMMDD.

SQLLastCompany
This setting is used to automatically store the last Company ID selected for
the current workstation. This allows the company selection drop-down list
to be defaulted to the last company used.

DefaultLastCompany
This setting can be FALSE or missing and is used to disable the automatic
defaulting of the last company used when logging into Microsoft
Dynamics GP or switching companies.

MBS_Debug_UpdateLastUserOnExit
This setting can be FALSE or missing and is used to disable writing the
last user and company details when exiting from Microsoft Dynamics GP.

MBS_Debug_CompanySwitchWidth
This setting can be TRUE or missing and is used to expand the fields on
the Company Login window to use the full width of the window.

MBS_Debug_WinDebugger
This setting is used to store the last window size, position, and state for the
GP Power Tools main window.

C H A P T E R 8 D E X . I N I S E T T I N G S

432 G P P O W E R T O O L S

MBS_Debug_WinDebuggerSetup
This setting is used to store the last window size, position, and state for the
GP Power Tools Setup window.

MBS_Debug_WinDebuggerStatus
This setting is used to store the last window size, position, and state for the
Trigger Status window.

MBS_Debug_WinResourceInformation
This setting is used to store the last window size, position, and state for the
Resource Information window.

MBS_Debug_WinResourceFinder
This setting is used to store the last window size, position, and state for the
Resource Finder window.

MBS_Debug_WinSecurityProfiler
This setting is used to store the last window size, position, and state for the
Security Profiler window.

MBS_Debug_WinSecurityInfo
This setting is used to store the last window size, position, and state for the
Security Information window.

MBS_Debug_WinSecurityInfoResource
This setting is used to store the last window size, position, and state for the
Security Information Resources window.

MBS_Debug_WinSecurityLog
This setting is used to store the last window size, position, and state for the
Security Log window.

MBS_Debug_WinSecurityLogDetail
This setting is used to store the last window size, position, and state for the
Security Log Details window.

MBS_Debug_WinSecurityLogResource
This setting is used to store the last window size, position, and state for the
Security Log Resource Details window.

MBS_Debug_WinSecurityAnalyzer
This setting is used to store the last window size, position, and state for the
Security Analyzer window.

MBS_Debug_WinSecurityEnhanced
This setting is used to store the last window size, position, and state for the
Enhanced Security window.

MBS_Debug_WinSecurityDeny
This setting is used to store the last window size, position, and state for the
Security Denied window.

 C H A P T E R 8 D E X . I N I S E T T I N G S

 G P P O W E R T O O L S 433

MBS_Debug_WinSecurityHide
This setting is used to store the last window size, position, and state for the
Security Hide window.

MBS_Debug_WinDictionaryControl
This setting is used to store the last window size, position, and state for the
Dictionary Control window.

MBS_Debug_WinCompanyFilter
This setting is used to store the last window size, position, and state for the
Company Login Filter window.

MBS_Debug_WinWindowMemory
This setting is used to store the last window size, position, and state for the
Window Position Memory window.

MBS_Debug_WinActivityLog
This setting is used to store the last window size, position, and state for the
User Activity Log window.

MBS_Debug_WinActivityLogDetail
This setting is used to store the last window size, position, and state for the
User Activity Log Detail window.

MBS_Debug_WinActivityLogMaxUser
This setting is used to store the last window size, position, and state for the
User Activity Log Maximum Users window.

MBS_Debug_WinLoginLimits
This setting is used to store the last window size, position, and state for the
Login Limits window.

MBS_Debug_WinLaunchFileConfig
This setting is used to store the last window size, position, and state for the
Launch File Configuration window.

MBS_Debug_WinProductSelection
This setting is used to store the last window size, position, and state for the
Dynamic Product Selection window.

MBS_Debug_WinWebsiteSettings
This setting is used to store the last window size, position, and state for the
Website Settings window.

MBS_Debug_WinProductVersion
This setting is used to store the last window size, position, and state for the
Product Version Validation window.

MBS_Debug_WinXMLTableExport
This setting is used to store the last window size, position, and state for the
XML Table Export window.

C H A P T E R 8 D E X . I N I S E T T I N G S

434 G P P O W E R T O O L S

MBS_Debug_WinXMLTableImport
This setting is used to store the last window size, position, and state for the
XML Table Import window.

MBS_Debug_WinDatabaseValidation
This setting is used to store the last window size, position, and state for the
Database Validation window.

MBS_Debug_WinLoginMaintenance
This setting is used to store the last window size, position, and state for the
SQL Login Maintenance window.

MBS_Debug_WinCopyUserSettings
This setting is used to store the last window size, position, and state for the
Copy User Settings window.

MBS_Debug_WinSQLTriggerControl
This setting is used to store the last window size, position, and state for the
SQL Trigger Control window.

MBS_Debug_WinNoteFixUtility
This setting is used to store the last window size, position, and state for the
Note Fix Utility window.

MBS_Debug_WinDatabaseSpaceRecovery
This setting is used to store the last window size, position, and state for the
Database Space Recovery window.

MBS_Debug_WinProjectSetup
This setting is used to store the last window size, position, and state for the
Project Setup window.

MBS_Debug_WinRuntimeExecute
This setting is used to store the last window size, position, and state for the
Runtime Execute Setup window.

MBS_Debug_WinRuntimeExecuter
This setting is used to store the last window size, position, and state for the
Runtime Executer window.

MBS_Debug_WinSQLExecute
This setting is used to store the last window size, position, and state for the
SQL Execute Setup window.

MBS_Debug_WinSQLExecuter
This setting is used to store the last window size, position, and state for the
SQL Executer window.

MBS_Debug_WinSQLResults
This setting is used to store the last window size, position, and state for the
SQL Results window.

 C H A P T E R 8 D E X . I N I S E T T I N G S

 G P P O W E R T O O L S 435

MBS_Debug_WinNetExecute
This setting is used to store the last window size, position, and state for the
Net Execute window.

MBS_Debug_WinNetExecuter
This setting is used to store the last window size, position, and state for the
Net Executer window.

MBS_Debug_WinParameterMaintenance
This setting is used to store the last window size, position, and state for the
Parameter List Maintenance window.

MBS_Debug_WinMessagesSetup
This setting is used to store the last window size, position, and state for the
Messages Setup window.

MBS_Debug_WinSnippetSetup
This setting is used to store the last window size, position, and state for the
Snippet Setup window.

MBS_Debug_WinFormControlSetup
This setting is used to store the last window size, position, and state for the
Form Control Setup window.

MBS_Debug_WinPasswordSetup
This setting is used to store the last window size, position, and state for the
Password Setup window.

MBS_Debug_WinFormControlStatus
This setting is used to store the last window size, position, and state for the
Form Control Status window.

MBS_Debug_WinFormControlResources
This setting is used to store the last window size, position, and state for the
Form Control Resources window.

MBS_Debug_WinTriggerListMaintenance
This setting is used to store the last window size, position, and state for the
Dynamic Trigger Logging window.

MBS_Debug_WinConfigurationExportImport
This setting is used to store the last window size, position, and state for the
Configuration Export/Import window.

MBS_Debug_WinConfigurationMaintenance
This setting is used to store the last window size, position, and state for the
Configuration Maintenance window.

MBS_Debug_WinScreenShot
This setting is used to store the last window size, position and state for the
ScreenShot window.

C H A P T E R 8 D E X . I N I S E T T I N G S

436 G P P O W E R T O O L S

MBS_Debug_WinLoggingSettings
This setting is used to store the last window size, position and state for the
Logging Settings window.

MBS_Debug_WinEmailSettings
This setting is used to store the last window size, position and state for the
Email Settings window.

MBS_Debug_WinAdminSettings
This setting is used to store the last window size, position and state for the
Administrator Settings window.

MBS_Debug_WinConfigSettings
This setting is used to store the last window size, position and state for the
Dex.ini Configuration window.

MBS_Debug_WinSendEmail
This setting is used to store the last window size, position and state for the
Send Email window.

MBS_Debug_WinResourceExplorer
This setting is used to store the last window size, position and state for the
Form Explorer window.

MBS_Debug_WinMenuExplorer
This setting is used to store the last window size, position and state for the
Menu Explorer window.

MBS_Debug_WinTableExplorer
This setting is used to store the last window size, position and state for the
Table Explorer window.

MBS_Debug_WinReportExplorer
This setting is used to store the last window size, position and state for the
Report Explorer window.

MBS_Debug_WinObjectExplorer
This setting is used to store the last window size, position and state for the
Security Object Explorer window.

MBS_Debug_WinScriptExplorer
This setting is used to store the last window size, position and state for the
Script Explorer window.

MBS_Debug_WinTableLookup
This setting is used to store the last window size, position and state for the
Table Lookup window.

MBS_Debug_WinFieldLookup
This setting is used to store the last window size, position and state for the
Field Lookup window.

 C H A P T E R 8 D E X . I N I S E T T I N G S

 G P P O W E R T O O L S 437

MBS_Debug_WinGlobalExplorer
This setting is used to store the last window size, position and state for the
Global Variables Explorer window.

MBS_Debug_WinConstantExplorer
This setting is used to store the last window size, position and state for the
Constant Explorer window.

MBS_Debug_WinFormExplorer
This setting is used to store the last window size, position and state for the
Form Explorer window.

MBS_Debug_WinCalculator
This setting is used to store the last window size, position and state for the
Calculator window.

MBS_Debug_WinKeyLookup
This setting is used to store the last window size, position and state for the
Table Keys Lookup window.

MBS_Debug_WinDAGControl
This setting is used to store the last window size, position and state for the
Dictionary Assembly Generator Control window.

MBS_Debug_WinScreenOutput
This setting is used to store the last window size, position and state for the
Report Writer Screen Output window.

MBS_Debug_DisableScreenOutputMemory
This setting can be used to disable the window position memory feature
for the Report Writer Screen Output window..

MBS_Debug_Automate_File
This setting is used by Microsoft Support to provide the full path or
filename to a Diagnostics configuration settings file to be loaded after
logging into Microsoft Dynamics GP. If the full path is not provided, the
file can be located in the Debugger logs folder, the application’s Data
folder, or the folders where the DYNAMICS.EXE or DYNAMICS.SET are
located. Trigger IDs, Script IDs and Profile IDs loaded with this option
should be prefixed with a tilde (~) character. By default, this setting is
removed after use.

MBS_Debug_Automate_Script
This setting is used by Microsoft Support to provide the Script ID for a
Runtime Execute Setup Diagnostics script to be executed after logging into
Microsoft Dynamics GP. The Script ID executed with this option should be
prefixed with a tilde (~) character. By default, this setting is removed after
use.

C H A P T E R 8 D E X . I N I S E T T I N G S

438 G P P O W E R T O O L S

MBS_Debug_Automate_Status
This setting is used by Microsoft Support to control to the behavior of the
Diagnostics automation features of GP Power Tools. By default, this
setting is removed after use. The valid flags (which can be added together)
are as follows:

1 – Do not delete settings loaded from configuration settings file.
2 – Do not delete Diagnostics Automation Dex.ini settings.
4 – Do not delete configuration settings XML file.
8 – Do not display “Please Wait” dialogs while loading settings file.

MBS_Debug_DisableSplitters
This setting can be used disable the splitter functionality on the Security
Information and Resource Explorer windows. Set it to TRUE to disable the
splitters.

MBS_Debug_VBADisableReset
This setting is used by GP Power Tools to signify that Visual Basic for
Applications (VBA) should be re-enabled after one login.

MBS_Debug_VSTDisable
This setting is used by GP Power Tools to disable Visual Studio Tools
Addins on login.

MBS_Debug_VSTDisableReset
This setting is used by GP Power Tools to signify that Visual Studio Tools
Addins should be re-enabled after one login.

MBS_Debug_SkipVersionChecks
This setting is used to allow GP Power Tools to run on a different version
of Dexterity than the one it was built for. It is to be used when testing GP
Power Tools on upcoming versions of Microsoft Dynamics GP.

MBS_Debug_LastRunSystem
This setting is used to track when GP Power Tools was last run on a
particular workstation.

MBS_Debug_LastRunUser
This setting is used to track when GP Power Tools was last run by a
particular user.

MBS_Debug_LogWinData
This setting is used to enable logging for the automatic window
positioning code for troubleshooting purposes.

MBS_Debug_CompanyFilter
This setting is used to specify the Company Login Filter Profile ID to use
for the current workstation.

MBS_Debug_LogListPath
This setting is used to specify the text file containing the settings for
Dynamic Trigger Logging.

 C H A P T E R 8 D E X . I N I S E T T I N G S

 G P P O W E R T O O L S 439

MBS_Debug_Break
This setting can be TRUE or missing and is used to force the Script
Debugger (if enabled) to open automatically when starting Microsoft
Dynamics GP.

MBS_Debug_LookupPosition
This setting can be FALSE or missing and is used to disable the Lookup
Window Positioning which ensures Lookup windows open next to the
calling window.

MBS_Debug_NamesUseClipboard
This setting can be TRUE or missing and is used to enable Names Button
Uses Clipboard option on the script menu.

MBS_Debug_CaptureSettings
This setting can be TRUE or missing and is used to enable the logging of
reads to Dex.ini settings which do not exist in the Dex.ini file. The data
captured can be printed from the Dex.ini Configuration window.

MBS_Debug_DisableWebsiteSettings
This setting can be TRUE or missing and is used to disable changing of the
default websites for the Connect and Intelligent Cloud Insights (GP 2018
R2 or later) homepage sections. The settings are controlled on the Website
Settings window.

MBS_Debug_ProductVersionOverride
This setting can be TRUE or missing and is used to disable displaying of
the Product Version Validation warning dialog on a workstation.

MBS_Debug_WCBackground
This setting can be TRUE or missing and is used to force background
processing during login on the Web Client. It was used when debugging
an issue when the Web Client would not initialize the home page after
login.

MBS_Debug_ValidateLaunchFile
This setting can be FALSE or missing and is used to disable validation of
folder paths used in the launch file during login. Having non-existent
paths referenced in the launch file can cause issues with reading version
numbers from dictionaries.

MBS_Debug_DexIniCheck
This setting can be FALSE or missing and is used to disable checking the
system Dex.ini file can be written to. Making the Dex.ini file read-only can
cause issues with products that write settings to the Dex.ini file.

MBS_Debug_ExportCompatibilityWarning
This setting can be FALSE or missing and is used to disable the displaying
of compatibility warnings when exporting projects from Project Setup, if
the project will not be compatible with Build 28 or earlier.

C H A P T E R 8 D E X . I N I S E T T I N G S

440 G P P O W E R T O O L S

DefaultLastUserWindows
This setting can be used to enable the defaulting of the User ID to the
current Windows User ID when logging into Microsoft Dynamics GP.

SuppressChangeDateForce
This setting can be used to force the User Date to change at midnight even
when the date change request dialog is suppressed. Use in conjunction
with the SuppressChangeDateDialog setting.

MBS_Debug_DisableTimedProcessRestore
This setting can be disable GP Power Tools applying a fix for the bug in
the Dexterity function Activity_GetBackgroundStatus() where it removes
timed processes when called.

MBS_Debug_HideGames
This setting can be used to hide the games from the Microsoft Dynamics
GP >> Tools >> Customize menu.

MBS_Debug_UserMessageReplace
This setting can be set to FALSE to disable the replacement of the User
Message dialogs which an Automatic Logout friendly custom form.

 C H A P T E R 8 D E X . I N I S E T T I N G S

 G P P O W E R T O O L S 441

System Settings

GP Power Tools can also manipulate the values of certain system settings
stored in the Dex.ini settings file:

SQLLogSQLStmt
This setting can be TRUE or FALSE and controls whether statements
Microsoft Dynamics GP sends to the SQL Server are logged to the
DEXSQL.LOG file by default.

SQLLogODBCMessages
This setting can be TRUE or FALSE and controls whether ODBC messages
returned from the SQL Server back to the Microsoft Dynamics GP client
are logged to the DEXSQL.LOG file by default.

SQLLogAllODBCMessages
This setting can be TRUE or FALSE and controls whether all ODBC
messages returned from the SQL Server back to the Microsoft Dynamics
GP client are logged to the DEXSQL.LOG file by default.

SQLLogPath
This setting can be used to change the default location of the
DEXSQL.LOG file.

ScriptDebugger
This setting can be TRUE or FALSE and controls whether the Dexterity
Debug menu is available in runtime mode.

ScriptDebuggerProduct
This setting contains the Dexterity Product ID that will be used to set the
initial context of the Debug menu. The default value is 0 for Dynamics.

ShowDebugMessages
This setting can be TRUE or FALSE and controls whether internal debug
message dialogs are displayed when the Debug Menu is enabled. It is
recommended that this should be set to FALSE for production systems.

ScriptLogEnhanced
This setting can be TRUE or FALSE and controls whether the enhanced
Dexterity Script Log features are enabled. Enabling this option adds time
stamps and flagging of background processes to the script log. The default
value is set to TRUE by GP Power Tools.

ApplicationName
This setting contains the name to be shown on the title bar when the
application first launches. If this value is not defined, the name in the title
bar will default to “Dexterity Runtime”.

AutoInstallChunks
This setting allows chunks to be included without prompting when
Microsoft Dynamics GP is launched.

C H A P T E R 8 D E X . I N I S E T T I N G S

442 G P P O W E R T O O L S

AllowWrongDex
This setting allows a mismatched Dex.dic and Dexterity Runtime version
to be used. It is not recommended to use this option.

SkipVersionChecks
This setting allows Microsoft Dynamics GP to launch without errors even
when the dictionary version numbers do not match the version
information in the database. It is not recommended to use this option.

SAMPLEDATEMSG
This setting prevents the Fabrikam sample company date warning dialog
from opening when logging in.

SQLLoginCompatibilityMode
This setting controls if Microsoft Dynamics GP continues to use SQL Login
Compatibility Mode.

ExportOneLineBody
This setting controls whether text report body sections are exported as a
single line in the export file.

ExportLinesPerPage
This setting controls the number of lines to include on a report page when
it is exported to a file.

ExportPDFLinesPerPage
This setting controls the number of lines to include on a report page when
it is exported to a PDF file.

DebugRW
This setting is used to configure the Report Writer to create a debugging
log file named DebugRW.txt that will appear in the data subfolder beneath
the Microsoft Dynamics GP application folder.

SuppressChangeDateDialog
This setting prevents the Change Date dialog from being displayed at
midnight. If used, the User Date will not change at midnight. Use the
SuppressChangeDateForce setting to force the date to change.

ShowAdvancedMacroMenu
This setting will enable the Advanced Macro Menu from the Tools >>
Macro menu.

ShowAllMenuItems
This setting will leave all menu items showing even if the module is not
installed or if access is denied.

SuppressSound
This setting disables all sound from the Microsoft Dynamics GP
application.

 C H A P T E R 8 D E X . I N I S E T T I N G S

 G P P O W E R T O O L S 443

QueueMoreInfo
This setting can be used to enable the More Info button on the Process
Monitor window.

MouseWheel
This setting can be used to disable Mouse Wheel scrolling in the
application.

MaxSWScrollbarSize
This setting can be used to override the width of scrollbars in the
application. The default value is 17 pixels.

DebugFonts
This setting can be used to enable logging of Report Writer selections to
the DebugLog.txt file.

TPELogging
This setting can be used to enable logging of the internals of the Template
Processing Engine (TPE) for word templates.

KeepTemplateTempFiles
This setting can be used to disable the automatic removal of the temporary
files used when the Template Processing Engine (TPE) runs.

VBADisable
This setting can be used to disable Visual Basic for Applications when
restarting Microsoft Dynamics GP.

EnableServerDropDown
This setting can be used to disable the Data Source Server selection when
logging into Microsoft Dynamics GP.

DefaultLastUser
This setting can be used to disable the defaulting of the last user used
when logging into Microsoft Dynamics GP.

EnableWCRibbons
This setting can be used to disable the GP 2013 R2 or later Web Client style
ribbons in the desktop client for the current workstation.

WindowMax
This setting can be used to control whether the application opens full
screen for the current workstation.

WindowPosX & WindowPosY
These settings can be used to control the default application position when
not maximized for the current workstation.

WindowWidth & WindowHeight
These settings can be used to control the default application size when not
maximized for the current workstation.

C H A P T E R 8 D E X . I N I S E T T I N G S

444 G P P O W E R T O O L S

OLEClose
This setting can be used to control whether the application attempts to
close the OLE Contain.exe program on exit for the current workstation

 C H A P T E R 8 D E X . I N I S E T T I N G S

 G P P O W E R T O O L S 445

Script Editor Settings

GP Power Tools uses some of the Dexterity Script Editor Dex.ini settings:

ScriptEditorSyntaxColoring
This setting stores whether Syntax Highlighting is enabled.

ScriptKeywordColor
This setting stores the color selection for keywords.

ScriptIdentifierColor
This setting stores the color selection for identifiers.

ScriptNumberColor
This setting stores the color selection for numbers.

ScriptStringColor
This setting stores the color selection for strings.

ScriptCommentColor
This setting stores the color selection for comments.

ScriptOperatorColor
This setting stores the color selection for operators.

ScriptErrorColor
This setting stores the color selection to display Scripting Highlighting
errors.

ScriptEditorFontName
This setting stores the font style section.

ScriptEditorFontSize
This setting stores the font size section.

446 G P P O W E R T O O L S

 Chapter 9: Helper Functions

GP Power Tools has many helper functions which can be used to make
cross-dictionary Dexterity sanScript simpler to write. The Helper Function
Assistant window will automatically insert the code required to use these
functions.

Below are the details of the helpers available:

• MBS_Get_Window_Value
• MBS_Get_Window_Value_Boolean
• MBS_Get_Window_Value_Date
• MBS_Get_Window_Value_Numeric
• MBS_Get_Window_Value_String
• MBS_Get_Window_Value_Text
• MBS_Get_Window_Value_Time
• MBS_Get_Window_Value_Exists
• MBS_Get_Window_Value_Modified
• MBS_Get_Window_Value_Modified_Boolean
• MBS_Get_Window_Value_Modified_Date
• MBS_Get_Window_Value_Modified_Numeric
• MBS_Get_Window_Value_Modified_String
• MBS_Get_Window_Value_Modified_Text
• MBS_Get_Window_Value_Modified_Time
• MBS_Get_Window_Value_Modified_Exists

• MBS_Set_Window_Value
• MBS_Set_Window_Value_Boolean
• MBS_Set_Window_Value_Date
• MBS_Set_Window_Value_Numeric
• MBS_Set_Window_Value_String
• MBS_Set_Window_Value_Text
• MBS_Set_Window_Value_Time
• MBS_Set_Window_Value_Focus
• MBS_Set_Window_Value_Focus_Immediate
• MBS_Set_Window_Value_Enabled
• MBS_Set_Window_Value_ReadOnly
• MBS_Set_Window_Value_Visible
• MBS_Set_Window_Value_Modified
• MBS_Set_Window_Value_Modified_Boolean
• MBS_Set_Window_Value_Modified_Date
• MBS_Set_Window_Value_Modified_Numeric
• MBS_Set_Window_Value_Modified_String
• MBS_Set_Window_Value_Modified_Text
• MBS_Set_Window_Value_Modified_Time
• MBS_Set_Window_Value_Modified_Focus
• MBS_Set_Window_Value_Modified_Focus_Immediate
• MBS_Set_Window_Value_Modified_Enabled
• MBS_Set_Window_Value_Modified_ReadOnly
• MBS_Set_Window_Value_Modified_Visible

• MBS_Run_Window_Value
• MBS_Run_Window_Value_Modified
• MBS_Pull_Window_Focus

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 447

• MBS_Get_Table_Value1
• MBS_Set_Table_Value1
• MBS_Get_Table_Value2
• MBS_Set_Table_Value2
• MBS_Get_Table_Value3
• MBS_Set_Table_Value3
• MBS_Get_Table_Value4
• MBS_Set_Table_Value4
• MBS_Get_Table_Buffer_Value
• MBS_Get_Table_Buffer_Value_Boolean
• MBS_Get_Table_Buffer_Value_Date
• MBS_Get_Table_Buffer_Value_Numeric
• MBS_Get_Table_Buffer_Value_String
• MBS_Get_Table_Buffer_Value_Text
• MBS_Get_Table_Buffer_Value_Time
• MBS_Set_Table_Buffer_Value
• MBS_Set_Table_Buffer_Value_Boolean
• MBS_Set_Table_Buffer_Value_Date
• MBS_Set_Table_Buffer_Value_Numeric
• MBS_Set_Table_Buffer_Value_String
• MBS_Set_Table_Buffer_Value_Text
• MBS_Set_Table_Buffer_Value_Time

• MBS_Copy_To_Window
• MBS_Copy_From_Window
• MBS_Copy_To_Window_Modified
• MBS_Copy_From_Window_Modified
• MBS_Table_Buffer_Get
• MBS_Table_Buffer_Save
• MBS_Table_Buffer_Remove
• MBS_Table_Buffer_Release
• MBS_Table_Buffer_Range
• MBS_Table_Buffer_Clear
• MBS_Table_Buffer_Fill

• MBS_Runtime_Execute
• MBS_Runtime_Execute_Background
• MBS_Runtime_Execute_Delayed
• MBS_Runtime_Execute_After_Background
• MBS_Runtime_Execute_Modified
• MBS_Runtime_Execute_Modified_Background
• MBS_Runtime_Execute_Modified_Delayed
• MBS_Runtime_Execute_Modified_After_Background
• MBS_SQL_Set_Database
• MBS_SQL_Check_Exists
• MBS_SQL_Execute
• MBS_SQL_Get_Data
• MBS_SQL_Parse_Data
• MBS_SQL_Parse_Data_Boolean
• MBS_SQL_Parse_Data_Currency
• MBS_SQL_Parse_Data_Date
• MBS_SQL_Parse_Data_Datetime
• MBS_SQL_Parse_Data_Integer
• MBS_SQL_Parse_Data_Long
• MBS_SQL_Parse_Data_String
• MBS_SQL_Parse_Data_Text

C H A P T E R 9 H E L P E R F U N C T I O N S

448 G P P O W E R T O O L S

• MBS_SQL_Parse_Data_Time
• MBS_SQL_Parse_Data_VCurrency
• MBS_SQL_Parse_Data_Reset
• MBS_Export_SQL_Query_To_File
• MBS_SQL_Results
• MBS_SQL_Results_Immediate
• MBS_SQL_Results_Goto
• MBS_SQL_Results_Immediate_Goto
• MBS_SQL_Results_Close
• MBS_SQL_Results2
• MBS_SQL_Results_Immediate2
• MBS_SQL_Results_Goto2
• MBS_SQL_Results_Immediate_Goto2
• MBS_SQL_Results_Close2
• MBS_SQL_Goto_Get_Data
• MBS_SQL_Goto_Close
• MBS_SQL_Sort_Get
• MBS_SQL_Sort_Get
• MBS_SQL_Export_Data
• MBS_Net_Execute
• MBS_Script_Load_Dex
• MBS_Script_Load_SQL
• MBS_Script_Load_SQL_DB
• MBS_Script_Load_Net

• MBS_Param_Set
• MBS_Param_Get
• MBS_Param_Del
• MBS_Param_DelAll

• MBS_Memory_Set
• MBS_Memory_Set_Boolean
• MBS_Memory_Set_Currency
• MBS_Memory_Set_Date
• MBS_Memory_Set_Long
• MBS_Memory_Set_String
• MBS_Memory_Set_Time
• MBS_Memory_Set_Reference
• MBS_Memory_Set_Table
• MBS_Memory_Set_Field
• MBS_Memory_Get
• MBS_Memory_Get_Boolean
• MBS_Memory_Get_Currency
• MBS_Memory_Get_Date
• MBS_Memory_Get_Long
• MBS_Memory_Get_String
• MBS_Memory_Get_Time
• MBS_Memory_Get_Reference
• MBS_Memory_Del
• MBS_Memory_Del_Boolean
• MBS_Memory_Del_Currency
• MBS_Memory_Del_Date
• MBS_Memory_Del_Long
• MBS_Memory_Del_String
• MBS_Memory_Del_Time
• MBS_Memory_Del_Reference

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 449

• MBS_Get_Constant
• MBS_Get_Constant_Currency
• MBS_Get_Constant_Integer
• MBS_Get_Constant_String
• MBS_Set_Global
• MBS_Set_Global_Boolean
• MBS_Set_Global_Date
• MBS_Set_Global_Numeric
• MBS_Set_Global_String
• MBS_Set_Global_Text
• MBS_Set_Global_Time
• MBS_Get_Global
• MBS_Get_Global_Boolean
• MBS_Get_Global_Date
• MBS_Get_Global_Numeric
• MBS_Get_Global_String
• MBS_Get_Global_Text
• MBS_Get_Global_Time

• MBS_Auto_Log
• MBS_Logging_Start
• MBS_Logging_Stop
• MBS_Trigger_Start
• MBS_Trigger_Stop
• MBS_Trigger_Update_Dialog
• MBS_Trigger_Update_Email
• MBS_Arguments_Get_Count
• MBS_Arguments_Get_Type
• MBS_Arguments_Get_Value
• MBS_Arguments_Set_Value

• MBS_DUOS_Set
• MBS_DUOS_Get
• MBS_DUOS_Del
• MBS_DUOS_DelAll
• MBS_UserAddInfo_Get
• MBS_UserAddInfo_Set
• MBS_UserAddInfo_GetPrompt
• MBS_SQL_Lookup
• MBS_SQL_Lookup2
• MBS_SQL_Lookup_Parameter
• MBS_SQL_Lookup_Parameter2
• MBS_SQL_Lookup_Validate
• MBS_SQL_Lookup_Parameter_Validate
• MBS_Form_Lookup
• MBS_Form_Lookup2
• MBS_Form_Lookup_Parameter
• MBS_Form_Lookup_Parameter2
• MBS_Project_Start
• MBS_Project_Stop

• MBS_Script_Substitute
• MBS_Parameter_Placeholder
• MBS_Parameter_String
• MBS_Parameter_Number
• MBS_Parameter_Currency

C H A P T E R 9 H E L P E R F U N C T I O N S

450 G P P O W E R T O O L S

• MBS_Parameter_Boolean
• MBS_Parameter_Date
• MBS_Parameter_Time
• MBS_Parameter_Load
• MBS_Parameter_Open
• MBS_Parameter_Set_String
• MBS_Parameter_Set_Number
• MBS_Parameter_Set_Currency
• MBS_Parameter_Set_Boolean
• MBS_Parameter_Set_Date
• MBS_Parameter_Set_Time
• MBS_Parameter_Get_String
• MBS_Parameter_Get_Number
• MBS_Parameter_Get_Currency
• MBS_Parameter_Get_Boolean
• MBS_Parameter_Get_Date
• MBS_Parameter_Get_Time

• MBS_Convert
• MBS_Convert_Boolean
• MBS_Convert_Currency
• MBS_Convert_Date
• MBS_Convert_Datetime
• MBS_Convert_Integer
• MBS_Convert_Long
• MBS_Convert_String
• MBS_Convert_Text
• MBS_Convert_Time
• MBS_Convert_VCurrency

• MBS_Return_By_Field
• MBS_Return_By_Field2
• MBS_Return_By_Reference
• MBS_Return_By_Reference2
• MBS_Map_By_Field
• MBS_Map_By_Reference
• MBS_Map
• MBS_Map_Boolean
• MBS_Map_Date
• MBS_Map_Numeric
• MBS_Map_String
• MBS_Map_Text
• MBS_Map_Time

• MBS_Get_Message
• MBS_Get_Message_Prompts
• MBS_getmsg
• MBS_Get_Error_Message
• MBS_Show_Dialog
• MBS_Show_Dialog_Text
• MBS_Ask_Dialog
• MBS_Ask_Dialog_Text
• MBS_Get_DateTime
• MBS_Token
• MBS_Field_ParseText
• MBS_subtext

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 451

• MBS_Security_Form_Check

• MBS_Trigger_Disable
• MBS_Trigger_Enable
• MBS_Trigger_DisableSingle
• MBS_Trigger_EnableSingle
• MBS_Is_Trigger_Started
• MBS_Is_Trigger_Enabled

• MBS_Exit_After_Processes
• MBS_Switch_Company
• MBS_CompanyColorGetRGB
• MBS_Copy_To_Clipboard
• MBS_Copy_From_Clipboard
• MBS_Show_Desktop_Alert
• MBS_Email_API

• MBS_Add_Virtual_Field
• MBS_Add_Virtual_FieldPrompt
• MBS_Add_Virtual_FieldFormat
• MBS_Add_Virtual_FieldPromptLookup
• MBS_Add_Virtual_FieldPromptFormat
• MBS_Add_Virtual_FieldAll
• MBS_Add_Virtual_FieldLine
• MBS_Expand_Virtual_Field_Window
• MBS_Get_Field_Reference
• MBS_Get_Virtual_Field
• MBS_Set_Virtual_Field
• MBS_Map_Virtual_Field
• MBS_Get_Virtual_Field_Caption
• MBS_Set_Virtual_Field_Caption
• MBS_Get_Virtual_Field_Tooltip
• MBS_Set_Virtual_Field_Tooltip

• MBS_Ask_Password
• MBS_Control_Start
• MBS_Control_Stop
• MBS_Control_Stop_All
• MBS_Control_Update_Dialog
• MBS_Control_Update_Expression
• MBS_Get_First_Window
• MBS_Check_Resource_Exists

C H A P T E R 9 H E L P E R F U N C T I O N S

452 G P P O W E R T O O L S

MBS_Get_Window_Value

This call is used to obtain the value of a window field from any open form
in any dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

out anonymous field OUT_Field_Value;

out integer OUT_Status;

An example script is:

local integer l_status;

local string l_field;

call with name "MBS_Get_Window_Value" in dictionary 5261,

Dictionary, "Form", "Window", "Field", l_field, l_status;

if l_status = OKAY then

 warning str(l_field);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 453

MBS_Get_Window_Value_Boolean

This call is used to obtain the value of a boolean window field from any
open form in any dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

out boolean OUT_Field_Value;

out integer OUT_Status;

An example script is:

local integer l_status;

local boolean l_field;

call with name "MBS_Get_Window_Value_Boolean" in dictionary 5261,

Dictionary, "Form", "Window", "Field", l_field, l_status;

if l_status = OKAY then

 warning str(l_field);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

454 G P P O W E R T O O L S

MBS_Get_Window_Value_Date

This call is used to obtain the value of a date window field from any open
form in any dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

out date OUT_Field_Value;

out integer OUT_Status;

An example script is:

local integer l_status;

local date l_field;

call with name "MBS_Get_Window_Value_Date" in dictionary 5261,

Dictionary, "Form", "Window", "Field", l_field, l_status;

if l_status = OKAY then

 warning str(l_field);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 455

MBS_Get_Window_Value_Numeric

This call is used to obtain the value of a numeric window field from any
open form in any dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

out vcurrency OUT_Field_Value;

out integer OUT_Status;

An example script is:

local integer l_status;

local vcurrency l_field;

call with name "MBS_Get_Window_Value_Numeric" in dictionary 5261,

Dictionary, "Form", "Window", "Field", l_field, l_status;

if l_status = OKAY then

 warning str(l_field);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

456 G P P O W E R T O O L S

MBS_Get_Window_Value_String

This call is used to obtain the value of a string window field from any
open form in any dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

out string OUT_Field_Value;

out integer OUT_Status;

An example script is:

local integer l_status;

local string l_field;

call with name "MBS_Get_Window_Value_String" in dictionary 5261,

Dictionary, "Form", "Window", "Field", l_field, l_status;

if l_status = OKAY then

 warning str(l_field);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 457

MBS_Get_Window_Value_Text

This call is used to obtain the value of a text window field from any open
form in any dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

out text OUT_Field_Value;

out integer OUT_Status;

An example script is:

local integer l_status;

local text l_field;

call with name "MBS_Get_Window_Value_Text" in dictionary 5261,

Dictionary, "Form", "Window", "Field", l_field, l_status;

if l_status = OKAY then

 warning str(l_field);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

458 G P P O W E R T O O L S

MBS_Get_Window_Value_Time

This call is used to obtain the value of a time window field from any open
form in any dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

out time OUT_Field_Value;

out integer OUT_Status;

An example script is:

local integer l_status;

local time l_field;

call with name "MBS_Get_Window_Value_Time" in dictionary 5261,

Dictionary, "Form", "Window", "Field", l_field, l_status;

if l_status = OKAY then

 warning str(l_field);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 459

MBS_Get_Window_Value_Exists

This call is used to check the existence of a window field from any open
form in any dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

out integer OUT_Exists;

An example script is:

local integer l_exists;

call with name "MBS_Get_Window_Value_Exists" in dictionary 5261,

Dictionary, "Form", "Window", "Field", l_exists;

if l_exists = OKAY then

 warning str(l_exists);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

460 G P P O W E R T O O L S

MBS_Get_Window_Value_Modified

This call is used to obtain the value of a modified window field from any
open form in any dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

out anonymous field OUT_Field_Value;

out integer OUT_Status;

An example script is:

local integer l_status;

local string l_field;

call with name "MBS_Get_Window_Value_Modified" in dictionary 5261,

Dictionary, "Form", "Window", "Field", l_field, l_status;

if l_status = OKAY then

 warning str(l_field);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 461

MBS_Get_Window_Value_Modified_Boolean

This call is used to obtain the value of a boolean modified window field
from any open form in any dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

out boolean OUT_Field_Value;

out integer OUT_Status;

An example script is:

local integer l_status;

local boolean l_field;

call with name "MBS_Get_Window_Value_Modified_Boolean" in dictionary

5261, Dictionary, "Form", "Window", "Field", l_field, l_status;

if l_status = OKAY then

 warning str(l_field);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

462 G P P O W E R T O O L S

MBS_Get_Window_Value_Modified_Date

This call is used to obtain the value of a date modified window field from
any open form in any dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

out date OUT_Field_Value;

out integer OUT_Status;

An example script is:

local integer l_status;

local date l_field;

call with name "MBS_Get_Window_Value_Modified_Date" in dictionary

5261, Dictionary, "Form", "Window", "Field", l_field, l_status;

if l_status = OKAY then

 warning str(l_field);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 463

MBS_Get_Window_Value_Modified_Numeric

This call is used to obtain the value of a numeric modified window field
from any open form in any dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

out vcurrency OUT_Field_Value;

out integer OUT_Status;

An example script is:

local integer l_status;

local vcurrency l_field;

call with name "MBS_Get_Window_Value_Modified_Numeric" in dictionary

5261, Dictionary, "Form", "Window", "Field", l_field, l_status;

if l_status = OKAY then

 warning str(l_field);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

464 G P P O W E R T O O L S

MBS_Get_Window_Value_Modified_String

This call is used to obtain the value of a string modified window field
from any open form in any dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

out string OUT_Field_Value;

out integer OUT_Status;

An example script is:

local integer l_status;

local string l_field;

call with name "MBS_Get_Window_Value_Modified_String" in dictionary

5261, Dictionary, "Form", "Window", "Field", l_field, l_status;

if l_status = OKAY then

 warning str(l_field);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 465

MBS_Get_Window_Value_Modified_Text

This call is used to obtain the value of a text modified window field from
any open form in any dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

out text OUT_Field_Value;

out integer OUT_Status;

An example script is:

local integer l_status;

local text l_field;

call with name "MBS_Get_Window_Value_Modified_Text" in dictionary

5261, Dictionary, "Form", "Window", "Field", l_field, l_status;

if l_status = OKAY then

 warning str(l_field);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

466 G P P O W E R T O O L S

MBS_Get_Window_Value_Modified_Time

This call is used to obtain the value of a time modified window field from
any open form in any dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

out time OUT_Field_Value;

out integer OUT_Status;

An example script is:

local integer l_status;

local time l_field;

call with name "MBS_Get_Window_Value_Modified_Time" in dictionary

5261, Dictionary, "Form", "Window", "Field", l_field, l_status;

if l_status = OKAY then

 warning str(l_field);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 467

MBS_Get_Window_Value_Modified_Exists

This call is used to check the existence of a modified window field from
any open form in any dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

out integer OUT_Exists;

An example script is:

local integer l_exists;

call with name "MBS_Get_Window_Value_Modified_Exists" in dictionary

5261, Dictionary, "Form", "Window", "Field", l_exists;

if l_exists = OKAY then

 warning str(l_exists);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

468 G P P O W E R T O O L S

MBS_Set_Window_Value

This call is used to set the value of a window field from any open form in
any dictionary. You have the option to also run the target field’s change
script.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

in anonymous field IN_Field_Value;

in boolean IN_Run_Flag;

out integer OUT_Status;

An example script is:

local integer l_status;

local string l_field;

l_field = "Value";

call with name "MBS_Set_Window_Value" in dictionary 5261,

Dictionary, "Form", "Window", "Field", l_field, true {run script},

l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 469

MBS_Set_Window_Value_Boolean

This call is used to set the value of a boolean window field from any open
form in any dictionary. You have the option to also run the target field’s
change script.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

in boolean IN_Field_Value;

in boolean IN_Run_Flag;

out integer OUT_Status;

An example script is:

local integer l_status;

local boolean l_field;

l_field = false;

call with name "MBS_Set_Window_Value_Boolean" in dictionary 5261,

Dictionary, "Form", "Window", "Field", l_field, true {run script},

l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

470 G P P O W E R T O O L S

MBS_Set_Window_Value_Date

This call is used to set the value of a date window field from any open
form in any dictionary. You have the option to also run the target field’s
change script.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

in date IN_Field_Value;

in boolean IN_Run_Flag;

out integer OUT_Status;

An example script is:

local integer l_status;

local date l_field;

l_field = mkdate(1, 1, 1980);

call with name "MBS_Set_Window_Value_Date" in dictionary 5261,

Dictionary, "Form", "Window", "Field", l_field, true {run script},

l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 471

MBS_Set_Window_Value_Numeric

This call is used to set the value of a numeric window field from any open
form in any dictionary. You have the option to also run the target field’s
change script.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

in vcurrency IN_Field_Value;

in boolean IN_Run_Flag;

out integer OUT_Status;

An example script is:

local integer l_status;

local vcurrency l_field;

l_field = 0;

call with name "MBS_Set_Window_Value_Numeric" in dictionary 5261,

Dictionary, "Form", "Window", "Field", l_field, true {run script},

l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

472 G P P O W E R T O O L S

MBS_Set_Window_Value_String

This call is used to set the value of a string window field from any open
form in any dictionary. You have the option to also run the target field’s
change script.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

in string IN_Field_Value;

in boolean IN_Run_Flag;

out integer OUT_Status;

An example script is:

local integer l_status;

local string l_field;

l_field = "Value";

call with name "MBS_Set_Window_Value_String" in dictionary 5261,

Dictionary, "Form", "Window", "Field", l_field, true {run script},

l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 473

MBS_Set_Window_Value_Text

This call is used to set the value of a text window field from any open form
in any dictionary. You have the option to also run the target field’s change
script.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

in text IN_Field_Value;

in boolean IN_Run_Flag;

out integer OUT_Status;

An example script is:

local integer l_status;

local text l_field;

l_field = "Value";

call with name "MBS_Set_Window_Value_Text" in dictionary 5261,

Dictionary, "Form", "Window", "Field", l_field, true {run script},

l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

474 G P P O W E R T O O L S

MBS_Set_Window_Value_Time

This call is used to set the value of a time window field from any open
form in any dictionary. You have the option to also run the target field’s
change script.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

in time IN_Field_Value;

in boolean IN_Run_Flag;

out integer OUT_Status;

An example script is:

local integer l_status;

local time l_field;

l_field = mktime(0, 0, 0);

call with name "MBS_Set_Window_Value_Time" in dictionary 5261,

Dictionary, "Form", "Window", "Field", l_field, true {run script},

l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 475

MBS_Set_Window_Value_Focus

This call is used to set the focus to a window field from any open form in
any dictionary. The focus change takes effect when all other scripts has
been completed.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

out integer OUT_Status;

An example script is:

local integer l_status;

call with name "MBS_Set_Window_Value_Focus" in dictionary 5261,

Dictionary, "Form", "Window", "Field", l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

476 G P P O W E R T O O L S

MBS_Set_Window_Value_Focus_Immediate

This call is used to set the focus to a window field from any open form in
any dictionary. The focus change takes effect immediately.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

out integer OUT_Status;

An example script is:

local integer l_status;

call with name "MBS_Set_Window_Value_Focus_Immediate" in dictionary

5261, Dictionary, "Form", "Window", "Field", l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 477

MBS_Set_Window_Value_Enabled

This call is used to set the enabled/disabled state of a window field from
any open form in any dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

in boolean IN_Enabled;

out integer OUT_Status;

An example script is:

local integer l_status;

call with name "MBS_Set_Window_Value_Enabled" in dictionary 5261,

Dictionary, "Form", "Window", "Field", true, l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

478 G P P O W E R T O O L S

MBS_Set_Window_Value_ReadOnly

This call is used to set the locked/unlocked state of a window field from
any open form in any dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

in boolean IN_ReadOnly;

out integer OUT_Status;

An example script is:

local integer l_status;

call with name "MBS_Set_Window_Value_ReadOnly" in dictionary 5261,

Dictionary, "Form", "Window", "Field", true, l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 479

MBS_Set_Window_Value_Visible

This call is used to set the hidden/shown state of a window field from any
open form in any dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

in boolean IN_Visible;

out integer OUT_Status;

An example script is:

local integer l_status;

call with name "MBS_Set_Window_Value_Visible" in dictionary 5261,

Dictionary, "Form", "Window", "Field", true, l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

480 G P P O W E R T O O L S

MBS_Set_Window_Value_Modified

This call is used to set the value of a modified window field from any open
form in any dictionary. You have the option to also run the target field’s
change script.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

in anonymous field IN_Field_Value;

in boolean IN_Run_Flag;

out integer OUT_Status;

An example script is:

local integer l_status;

local string l_field;

l_field = "Value";

call with name "MBS_Set_Window_Value_Modified" in dictionary 5261,

Dictionary, "Form", "Window", "Field", l_field, true {run script},

l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 481

MBS_Set_Window_Value_Modified_Boolean

This call is used to set the value of a boolean modified window field from
any open form in any dictionary. You have the option to also run the
target field’s change script.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

in boolean IN_Field_Value;

in boolean IN_Run_Flag;

out integer OUT_Status;

An example script is:

local integer l_status;

local boolean l_field;

l_field = false;

call with name "MBS_Set_Window_Value_Modified_Boolean" in dictionary

5261, Dictionary, "Form", "Window", "Field", l_field, true {run

script}, l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

482 G P P O W E R T O O L S

MBS_Set_Window_Value_Modified_Date

This call is used to set the value of a date modified window field from any
open form in any dictionary. You have the option to also run the target
field’s change script.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

in date IN_Field_Value;

in boolean IN_Run_Flag;

out integer OUT_Status;

An example script is:

local integer l_status;

local date l_field;

l_field = mkdate(1, 1, 1980);

call with name "MBS_Set_Window_Value_Modified_Date" in dictionary

5261, Dictionary, "Form", "Window", "Field", l_field, true {run

script}, l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 483

MBS_Set_Window_Value_Modified_Numeric

This call is used to set the value of a numeric modified window field from
any open form in any dictionary. You have the option to also run the
target field’s change script.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

in vcurrency IN_Field_Value;

in boolean IN_Run_Flag;

out integer OUT_Status;

An example script is:

local integer l_status;

local vcurrency l_field;

l_field = 0;

call with name "MBS_Set_Window_Value_Modified_Numeric" in dictionary

5261, Dictionary, "Form", "Window", "Field", l_field, true {run

script}, l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

484 G P P O W E R T O O L S

MBS_Set_Window_Value_Modified_String

This call is used to set the value of a string modified window field from
any open form in any dictionary. You have the option to also run the
target field’s change script.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

in string IN_Field_Value;

in boolean IN_Run_Flag;

out integer OUT_Status;

An example script is:

local integer l_status;

local string l_field;

l_field = "Value";

call with name "MBS_Set_Window_Value_Modified_String" in dictionary

5261, Dictionary, "Form", "Window", "Field", l_field, true {run

script}, l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 485

MBS_Set_Window_Value_Modified_Text

This call is used to set the value of a text modified window field from any
open form in any dictionary. You have the option to also run the target
field’s change script.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

in text IN_Field_Value;

in boolean IN_Run_Flag;

out integer OUT_Status;

An example script is:

local integer l_status;

local text l_field;

l_field = "Value";

call with name "MBS_Set_Window_Value_Modified_Text" in dictionary

5261, Dictionary, "Form", "Window", "Field", l_field, true {run

script}, l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

486 G P P O W E R T O O L S

MBS_Set_Window_Value_Modified_Time

This call is used to set the value of a time modified window field from any
open form in any dictionary. You have the option to also run the target
field’s change script.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

in time IN_Field_Value;

in boolean IN_Run_Flag;

out integer OUT_Status;

An example script is:

local integer l_status;

local time l_field;

l_field = mktime(0, 0, 0);

call with name "MBS_Set_Window_Value_Modified_Time" in dictionary

5261, Dictionary, "Form", "Window", "Field", l_field, true {run

script}, l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 487

MBS_Set_Window_Value_Modified_Focus

This call is used to set the focus to a modified window field from any open
form in any modified dictionary. The focus change takes effect when all
other scripts has been completed.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

out integer OUT_Status;

An example script is:

local integer l_status;

call with name "MBS_Set_Window_Value_Modified_Focus" in dictionary

5261, Dictionary, "Form", "Window", "Field", l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

488 G P P O W E R T O O L S

MBS_Set_Window_Value_Modified_Focus_Immediate

This call is used to set the focus to a modified window field from any open
form in any modified dictionary. The focus change takes effect
immediately.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

out integer OUT_Status;

An example script is:

local integer l_status;

call with name "MBS_Set_Window_Value_Modified_Focus_Immediate" in

dictionary 5261, Dictionary, "Form", "Window", "Field", l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 489

MBS_Set_Window_Value_Modified_Enabled

This call is used to set the enabled/disabled state of a modified window
field from any open form in any dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

in boolean IN_Enabled;

out integer OUT_Status;

An example script is:

local integer l_status;

call with name "MBS_Set_Window_Value_Modified_Enabled" in dictionary

5261, Dictionary, "Form", "Window", "Field", true, l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

490 G P P O W E R T O O L S

MBS_Set_Window_Value_Modified_ReadOnly

This call is used to set the locked/unlocked state of a modified window
field from any open form in any dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

in boolean IN_ReadOnly;

out integer OUT_Status;

An example script is:

local integer l_status;

call with name "MBS_Set_Window_Value_Modified_ReadOnly" in

dictionary 5261, Dictionary, "Form", "Window", "Field", true,

l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 491

MBS_Set_Window_Value_Modified_Visible

This call is used to set the hidden/shown state of a modified window field
from any open form in any dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

in boolean IN_Visible;

out integer OUT_Status;

An example script is:

local integer l_status;

call with name "MBS_Set_Window_Value_Modified_Visible" in dictionary

5261, Dictionary, "Form", "Window", "Field", true, l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

492 G P P O W E R T O O L S

MBS_Run_Window_Value

This call is used to run the change script of a window field from any open
form in any dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

out integer OUT_Status;

An example script is:

local integer l_status;

call with name "MBS_Run_Window_Value" in dictionary 5261,

Dictionary, "Form", "Window", "Field", l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 493

MBS_Run_Window_Value_Modified

This call is used to run the change script of a modified window field from
any open form in any dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

out integer OUT_Status;

An example script is:

local integer l_status;

call with name "MBS_Run_Window_Value_Modified" in dictionary 5261,

Dictionary, "Form", "Window", "Field", l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

494 G P P O W E R T O O L S

MBS_Pull_Window_Focus

This call is used to pull the focus away from a window from any open
form in any dictionary. This will force any pending change or post scripts
to execute.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

out integer OUT_Status;

An example script is:

local integer l_status;

call with name "MBS_Pull_Window_Focus" in dictionary 5261,

Dictionary, "Form", "Window", l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 495

MBS_Get_Table_Value1

This call is used to obtain the value of a field located in any table in any
dictionary using an index containing one field.

All table and field names need to be the technical names and surrounded
by single quotes if they contain a space. The status returned will contain
the number of errors that occurred, a value of OKAY (zero) means the call
was successful. The Key Name fields need to contain the technical names
of the segment fields of the index being used.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Table_Name;

in string IN_Field_Name;

out anonymous field OUT_Field_Value;

out integer OUT_Status;

in integer IN_Index;

in string IN_Key_Name1;

in anonymous field IN_Key_Value1;

An example script is:

local integer l_status;

local string l_field;

local string l_key1;

l_key1 = "Value1";

call with name "MBS_Get_Table_Value1" in dictionary 5261,

Dictionary, "Table", "Field", l_field, l_status, 1 {Index},

 "Key1", l_key1;

if l_status = OKAY then

 warning str(l_field);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

496 G P P O W E R T O O L S

MBS_Set_Table_Value1

This call is used to update the value of a field located in any table in any
dictionary using an index containing one field. You can specify whether
the creation of a new table record is allowed.

All table and field names need to be the technical names and surrounded
by single quotes if they contain a space. The status returned will contain
the number of errors that occurred, a value of OKAY (zero) means the call
was successful. The Key Name fields need to contain the technical names
of the segment fields of the index being used.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Table_Name;

in string IN_Field_Name;

in anonymous field IN_Field_Value;

out integer OUT_Status;

in integer IN_Index;

in boolean IN_Allow_Add;

in string IN_Key_Name1;

in anonymous field IN_Key_Value1;

An example script is:

local integer l_status;

local string l_field;

local string l_key1;

l_key1 = "Value1";

l_field = "Value"

call with name "MBS_Set_Table_Value1" in dictionary 5261,

Dictionary, "Table", "Field", l_field, l_status, 1 {Index}, true

{allow add},

 "Key1", l_key1;

if l_status <> OKAY then

 warning str(l_status);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 497

MBS_Get_Table_Value2

This call is used to obtain the value of a field located in any table in any
dictionary using an index containing two fields.

All table and field names need to be the technical names and surrounded
by single quotes if they contain a space. The status returned will contain
the number of errors that occurred, a value of OKAY (zero) means the call
was successful. The Key Name fields need to contain the technical names
of the segment fields of the index being used.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Table_Name;

in string IN_Field_Name;

out anonymous field OUT_Field_Value;

out integer OUT_Status;

in integer IN_Index;

in string IN_Key_Name1;

in anonymous field IN_Key_Value1;

in string IN_Key_Name2;

in anonymous field IN_Key_Value2;

An example script is:

local integer l_status;

local string l_field;

local string l_key1, l_key2;

l_key1 = "Value1";

l_key2 = "Value2";

call with name "MBS_Get_Table_Value2" in dictionary 5261,

Dictionary, "Table", "Field", l_field, l_status, 1 {Index},

 "Key1", l_key1,

 "Key2", l_key2;

if l_status = OKAY then

 warning str(l_field);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

498 G P P O W E R T O O L S

MBS_Set_Table_Value2

This call is used to update the value of a field located in any table in any
dictionary using an index containing two fields. You can specify whether
the creation of a new table record is allowed.

All table and field names need to be the technical names and surrounded
by single quotes if they contain a space. The status returned will contain
the number of errors that occurred, a value of OKAY (zero) means the call
was successful. The Key Name fields need to contain the technical names
of the segment fields of the index being used.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Table_Name;

in string IN_Field_Name;

in anonymous field IN_Field_Value;

out integer OUT_Status;

in integer IN_Index;

in boolean IN_Allow_Add;

in string IN_Key_Name1;

in anonymous field IN_Key_Value1;

in string IN_Key_Name2;

in anonymous field IN_Key_Value2;

An example script is:

local integer l_status;

local string l_field;

local string l_key1, l_key2;

l_key1 = "Value1";

l_key2 = "Value2";

l_field = "Value"

call with name "MBS_Set_Table_Value2" in dictionary 5261,

Dictionary, "Table", "Field", l_field, l_status, 1 {Index}, true

{allow add},

 "Key1", l_key1,

 "Key2", l_key2;

if l_status <> OKAY then

 warning str(l_status);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 499

MBS_Get_Table_Value3

This call is used to obtain the value of a field located in any table in any
dictionary using an index containing three fields.

All table and field names need to be the technical names and surrounded
by single quotes if they contain a space. The status returned will contain
the number of errors that occurred, a value of OKAY (zero) means the call
was successful. The Key Name fields need to contain the technical names
of the segment fields of the index being used.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Table_Name;

in string IN_Field_Name;

out anonymous field OUT_Field_Value;

out integer OUT_Status;

in integer IN_Index;

in string IN_Key_Name1;

in anonymous field IN_Key_Value1;

in string IN_Key_Name2;

in anonymous field IN_Key_Value2;

in string IN_Key_Name3;

in anonymous field IN_Key_Value3;

An example script is:

local integer l_status;

local string l_field;

local string l_key1, l_key2, l_key3;

l_key1 = "Value1";

l_key2 = "Value2";

l_key3 = "Value3";

call with name "MBS_Get_Table_Value3" in dictionary 5261,

Dictionary, "Table", "Field", l_field, l_status, 1 {Index},

 "Key1", l_key1,

 "Key2", l_key2,

 "Key3", l_key3;

if l_status = OKAY then

 warning str(l_field);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

500 G P P O W E R T O O L S

MBS_Set_Table_Value3

This call is used to update the value of a field located in any table in any
dictionary using an index containing three fields. You can specify whether
the creation of a new table record is allowed.

All table and field names need to be the technical names and surrounded
by single quotes if they contain a space. The status returned will contain
the number of errors that occurred, a value of OKAY (zero) means the call
was successful. The Key Name fields need to contain the technical names
of the segment fields of the index being used.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Table_Name;

in string IN_Field_Name;

in anonymous field IN_Field_Value;

out integer OUT_Status;

in integer IN_Index;

in boolean IN_Allow_Add;

in string IN_Key_Name1;

in anonymous field IN_Key_Value1;

in string IN_Key_Name2;

in anonymous field IN_Key_Value2;

in string IN_Key_Name3;

in anonymous field IN_Key_Value3;

An example script is:

local integer l_status;

local string l_field;

local string l_key1, l_key2, l_key3;

l_key1 = "Value1";

l_key2 = "Value2";

l_key3 = "Value3";

l_field = "Value"

call with name "MBS_Set_Table_Value3" in dictionary 5261,

Dictionary, "Table", "Field", l_field, l_status, 1 {Index}, true

{allow add},

 "Key1", l_key1,

 "Key2", l_key2,

 "Key3", l_key3;

if l_status <> OKAY then

 warning str(l_status);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 501

MBS_Get_Table_Value4

This call is used to obtain the value of a field located in any table in any
dictionary using an index containing four fields.

All table and field names need to be the technical names and surrounded
by single quotes if they contain a space. The status returned will contain
the number of errors that occurred, a value of OKAY (zero) means the call
was successful. The Key Name fields need to contain the technical names
of the segment fields of the index being used.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Table_Name;

in string IN_Field_Name;

out anonymous field OUT_Field_Value;

out integer OUT_Status;

in integer IN_Index;

in string IN_Key_Name1;

in anonymous field IN_Key_Value1;

in string IN_Key_Name2;

in anonymous field IN_Key_Value2;

in string IN_Key_Name3;

in anonymous field IN_Key_Value3;

in string IN_Key_Name4;

in anonymous field IN_Key_Value4;

An example script is:

local integer l_status;

local string l_field;

local string l_key1, l_key2, l_key3, l_key4;

l_key1 = "Value1";

l_key2 = "Value2";

l_key3 = "Value3";

l_key4 = "Value4";

call with name "MBS_Get_Table_Value4" in dictionary 5261,

Dictionary, "Table", "Field", l_field, l_status, 1 {Index},

 "Key1", l_key1,

 "Key2", l_key2,

 "Key3", l_key3,

 "Key4", l_key4;

if l_status = OKAY then

 warning str(l_field);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

502 G P P O W E R T O O L S

MBS_Set_Table_Value4

This call is used to update the value of a field located in any table in any
dictionary using an index containing four fields. You can specify whether
the creation of a new table record is allowed.

All table and field names need to be the technical names and surrounded
by single quotes if they contain a space. The status returned will contain
the number of errors that occurred, a value of OKAY (zero) means the call
was successful. The Key Name fields need to contain the technical names
of the segment fields of the index being used.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Table_Name;

in string IN_Field_Name;

in anonymous field IN_Field_Value;

out integer OUT_Status;

in integer IN_Index;

in boolean IN_Allow_Add;

in string IN_Key_Name1;

in anonymous field IN_Key_Value1;

in string IN_Key_Name2;

in anonymous field IN_Key_Value2;

in string IN_Key_Name3;

in anonymous field IN_Key_Value3;

in string IN_Key_Name4;

in anonymous field IN_Key_Value4;

An example script is:

local integer l_status;

local string l_field;

local string l_key1, l_key2, l_key3, l_key4;

l_key1 = "Value1";

l_key2 = "Value2";

l_key3 = "Value3";

l_key4 = "Value4";

l_field = "Value"

call with name "MBS_Set_Table_Value4" in dictionary 5261,

Dictionary, "Table", "Field", l_field, l_status, 1 {Index}, true

{allow add},

 "Key1", l_key1,

 "Key2", l_key2,

 "Key3", l_key3,

 "Key4", l_key4;

if l_status <> OKAY then

 warning str(l_status);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 503

MBS_Get_Table_Buffer_Value

This call is used to obtain the value of a table buffer field from any
associated table on any open form in any dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Table_Name;

in string IN_Field_Name;

inout anonymous field INOUT_Field_Value;

out integer OUT_Status;

An example script is:

local integer l_status;

local string l_field;

call with name "MBS_Get_Table_Buffer_Value" in dictionary 5261,

Dictionary, "Form", "Table", "Field", l_field, l_status;

if l_status = OKAY then

 warning str(l_field);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

504 G P P O W E R T O O L S

MBS_Get_Table_Buffer_Value_Boolean

This call is used to obtain the value of a boolean table buffer field from any
associated table on any open form in any dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Table_Name;

in string IN_Field_Name;

inout boolean INOUT_Field_Value;

out integer OUT_Status;

An example script is:

local integer l_status;

local boolean l_field;

call with name "MBS_Get_Table_Buffer_Value_Boolean" in dictionary

5261, Dictionary, "Form", "Table", "Field", l_field, l_status;

if l_status = OKAY then

 warning str(l_field);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 505

MBS_Get_Table_Buffer_Value_Date

This call is used to obtain the value of a date table buffer field from any
associated table on any open form in any dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Table_Name;

in string IN_Field_Name;

inout date INOUT_Field_Value;

out integer OUT_Status;

An example script is:

local integer l_status;

local date l_field;

call with name "MBS_Get_Table_Buffer_Value_Date" in dictionary 5261,

Dictionary, "Form", "Table", "Field", l_field, l_status;

if l_status = OKAY then

 warning str(l_field);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

506 G P P O W E R T O O L S

MBS_Get_Table_Buffer_Value_Numeric

This call is used to obtain the value of a numeric table buffer field from
any associated table on any open form in any dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Table_Name;

in string IN_Field_Name;

inout vcurrency INOUT_Field_Value;

out integer OUT_Status;

An example script is:

local integer l_status;

local vcurrency l_field;

call with name "MBS_Get_Table_Buffer_Value_Numeric" in dictionary

5261, Dictionary, "Form", "Table", "Field", l_field, l_status;

if l_status = OKAY then

 warning str(l_field);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 507

MBS_Get_Table_Buffer_Value_String

This call is used to obtain the value of a string table buffer field from any
associated table on any open form in any dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Table_Name;

in string IN_Field_Name;

inout string INOUT_Field_Value;

out integer OUT_Status;

An example script is:

local integer l_status;

local string l_field;

call with name "MBS_Get_Table_Buffer_Value_string" in dictionary

5261, Dictionary, "Form", "Table", "Field", l_field, l_status;

if l_status = OKAY then

 warning str(l_field);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

508 G P P O W E R T O O L S

MBS_Get_Table_Buffer_Value_Text

This call is used to obtain the value of a text table buffer field from any
associated table on any open form in any dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Table_Name;

in string IN_Field_Name;

inout text INOUT_Field_Value;

out integer OUT_Status;

An example script is:

local integer l_status;

local text l_field;

call with name "MBS_Get_Table_Buffer_Value_Text" in dictionary 5261,

Dictionary, "Form", "Table", "Field", l_field, l_status;

if l_status = OKAY then

 warning str(l_field);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 509

MBS_Get_Table_Buffer_Value_Time

This call is used to obtain the value of a time table buffer field from any
associated table on any open form in any dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Table_Name;

in string IN_Field_Name;

inout time INOUT_Field_Value;

out integer OUT_Status;

An example script is:

local integer l_status;

local time l_field;

call with name "MBS_Get_Table_Buffer_Value_Time" in dictionary 5261,

Dictionary, "Form", "Table", "Field", l_field, l_status;

if l_status = OKAY then

 warning str(l_field);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

510 G P P O W E R T O O L S

MBS_Set_Table_Buffer_Value

This call is used to update the value of a table buffer field from any
associated table on any open form in any dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Table_Name;

in string IN_Field_Name;

in anonymous field IN_Field_Value;

out integer OUT_Status;

An example script is:

local integer l_status;

local string l_field;

l_field = "Value";

call with name "MBS_Set_Table_Buffer_Value" in dictionary 5261,

Dictionary, "Form", "Table", "Field", l_field, l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 511

MBS_Set_Table_Buffer_Value_Boolean

This call is used to update the value of a boolean table buffer field from
any associated table on any open form in any dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Table_Name;

in string IN_Field_Name;

in boolean IN_Field_Value;

out integer OUT_Status;

An example script is:

local integer l_status;

local boolean l_field;

l_field = true;

call with name "MBS_Set_Table_Buffer_Value_Boolean" in dictionary

5261, Dictionary, "Form", "Table", "Field", l_field, l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

512 G P P O W E R T O O L S

MBS_Set_Table_Buffer_Value_Date

This call is used to update the value of a date table buffer field from any
associated table on any open form in any dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Table_Name;

in string IN_Field_Name;

in date IN_Field_Value;

out integer OUT_Status;

An example script is:

local integer l_status;

local date l_field;

l_field = mkdate(1, 1, 1980);

call with name "MBS_Set_Table_Buffer_Value_Date" in dictionary 5261,

Dictionary, "Form", "Table", "Field", l_field, l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 513

MBS_Set_Table_Buffer_Value_Numeric

This call is used to update the value of a numeric table buffer field from
any associated table on any open form in any dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Table_Name;

in string IN_Field_Name;

in vcurrency IN_Field_Value;

out integer OUT_Status;

An example script is:

local integer l_status;

local vcurrency l_field;

l_field = 0.00;

call with name "MBS_Set_Table_Buffer_Value_Numeric" in dictionary

5261, Dictionary, "Form", "Table", "Field", l_field, l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

514 G P P O W E R T O O L S

MBS_Set_Table_Buffer_Value_String

This call is used to update the value of a string table buffer field from any
associated table on any open form in any dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Table_Name;

in string IN_Field_Name;

in string IN_Field_Value;

out integer OUT_Status;

An example script is:

local integer l_status;

local string l_field;

l_field = "Value";

call with name "MBS_Set_Table_Buffer_Value_String" in dictionary

5261, Dictionary, "Form", "Table", "Field", l_field, l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 515

MBS_Set_Table_Buffer_Value_Text

This call is used to update the value of a text table buffer field from any
associated table on any open form in any dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Table_Name;

in string IN_Field_Name;

in text IN_Field_Value;

out integer OUT_Status;

An example script is:

local integer l_status;

local text l_field;

l_field = "Value";

call with name "MBS_Set_Table_Buffer_Value_Text" in dictionary 5261,

Dictionary, "Form", "Table", "Field", l_field, l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

516 G P P O W E R T O O L S

MBS_Set_Table_Buffer_Value_Time

This call is used to update the value of a time table buffer field from any
associated table on any open form in any dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Table_Name;

in string IN_Field_Name;

in time IN_Field_Value;

out integer OUT_Status;

An example script is:

local integer l_status;

local time l_field;

l_field = mktime(0, 0 , 0);

call with name "MBS_Set_Table_Buffer_Value_Time" in dictionary 5261,

Dictionary, "Form", "Table", "Field", l_field, l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 517

MBS_Copy_To Window

This call is used to copy table buffer fields to the matching window fields
on any window on any open form in any dictionary.

Note this function does not check the AutoCopy property of the window
fields.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Table_Name;

out integer OUT_Status;

An example script is:

local integer l_status;

call with name "MBS_Copy_To_Window" in dictionary 5261, Dictionary,

"Form", "Window", "Table", l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

518 G P P O W E R T O O L S

MBS_Copy_From_Window

This call is used to copy table buffer fields from the matching window
fields on any window on any open form in any dictionary.

Note this function does not check the AutoCopy property of the window
fields.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Table_Name;

out integer OUT_Status;

An example script is:

local integer l_status;

call with name "MBS_Copy_From_Window" in dictionary 5261,

Dictionary, "Form", "Window", "Table", l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 519

MBS_Copy_To Window_Modified

This call is used to copy table buffer fields to the matching window fields
on any modified window on any open form in any dictionary.

Note this function does not check the AutoCopy property of the window
fields.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Table_Name;

out integer OUT_Status;

An example script is:

local integer l_status;

call with name "MBS_Copy_To_Window_Modified" in dictionary 5261,

Dictionary, "Form", "Window", "Table", l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

520 G P P O W E R T O O L S

MBS_Copy_From_Window_Modified

This call is used to copy table buffer fields from the matching window
fields on any modified window on any open form in any dictionary.

Note this function does not check the AutoCopy property of the window
fields.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Table_Name;

out integer OUT_Status;

An example script is:

local integer l_status;

call with name "MBS_Copy_From_Window_Modified" in dictionary 5261,

Dictionary, "Form", "Window", "Table", l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 521

MBS_Table_Buffer_Get

This call is used issue a get table or change table command against the
table buffer of a table associated with any open form in any dictionary.

See full example in the MBS_Table_Buffer_Range helper function section.

Operations available (with their values) are:

• GET+FIRST: 11
• GET+PREV: 12
• GET+NEXT: 13
• GET+LAST: 14
• GET+EQUAL: 15
• CHG+FIRST: 21
• CHG+PREV: 22
• CHG+NEXT: 23
• CHG+LAST: 24
• CHG+EQUAL: 25
• CHG+FIRST+LOCK: 51
• CHG+PREV+LOCK: 52
• CHG+NEXT+LOCK: 53
• CHG+LAST+LOCK: 54
• CHG+EQUAL+LOCK: 55

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Table_Name;

in integer IN_Operation;

in integer IN_Key;

out integer OUT_Status;

An example script is:

local integer l_status;

call with name " MBS_Table_Buffer_Get" in dictionary 5261,

Dictionary, "Form", "Table", <Operation>, <Key Number>, l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

522 G P P O W E R T O O L S

MBS_Table_Buffer_Save

This call is used issue a save table command against the table buffer of a
table associated with any open form in any dictionary.

See full example in the MBS_Table_Buffer_Range helper function section.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Table_Name;

out integer OUT_Status;

An example script is:

local integer l_status;

call with name " MBS_Table_Buffer_Save" in dictionary 5261,

Dictionary, "Form", "Table", l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 523

MBS_Table_Buffer_Remove

This call is used issue a remove table command against the table buffer of
a table associated with any open form in any dictionary.

See full example in the MBS_Table_Buffer_Range helper function section.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Table_Name;

out integer OUT_Status;

An example script is:

local integer l_status;

call with name " MBS_Table_Buffer_Remove" in dictionary 5261,

Dictionary, "Form", "Table", l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

524 G P P O W E R T O O L S

MBS_Table_Buffer_Release

This call is used issue a release table command against the table buffer of a
table associated with any open form in any dictionary.

See full example in the MBS_Table_Buffer_Range helper function section.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Table_Name;

out integer OUT_Status;

An example script is:

local integer l_status;

call with name " MBS_Table_Buffer_Release" in dictionary 5261,

Dictionary, "Form", "Table", l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 525

MBS_Table_Buffer_Range

This call is used issue a range table commands against the table buffer of a
table associated with any open form in any dictionary.

See full example on the following page.

Operations available (with their values) are:

• RANGE_CLEAR: 1
• RANGE_START: 2
• RANGE_END: 3
• RANGE_REMOVE: 4

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Table_Name;

in integer IN_Operation;

in integer IN_Key;

out integer OUT_Status;

An example script is:

local integer l_status;

call with name " MBS_Table_Buffer_Range" in dictionary 5261,

Dictionary, "Form", "Table", <Operation>, <Key Number>, l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

526 G P P O W E R T O O L S

A more complex example of setting a range and iterating through it is
shown in the script below:

local integer MBS_Status;

local string MBS_String_Value;

open form RM_Customer_Address;

MBS_String_Value = "ADAMPARK0001";

call with name "MBS_Table_Buffer_Range" in dictionary 5261,

 0 {Dict},

 "RM_Customer_Address" {Form},

 "RM_Customer_MSTR_ADDR" {Table},

 {RANGE_CLEAR} 1 {Operation},

 1 {Key},

 MBS_Status;

if MBS_Status <> OKAY then

 debug str(MBS_Status);

end if;

call with name "MBS_Table_Buffer_Clear" in dictionary 5261,

 0 {Dict},

 "RM_Customer_Address" {Form},

 "RM_Customer_MSTR_ADDR" {Table},

 MBS_Status;

if MBS_Status <> OKAY then

 debug str(MBS_Status);

end if;

call with name "MBS_Set_Table_Buffer_Value_String" in dictionary 5261,

 0 {Dict},

 "RM_Customer_Address" {Form},

 "RM_Customer_MSTR_ADDR" {Table},

 "'Customer Number'" {Field},

 MBS_String_Value, MBS_Status;

if MBS_Status <> OKAY then

 debug str(MBS_Status);

end if;

call with name "MBS_Table_Buffer_Range" in dictionary 5261,

 0 {Dict},

 "RM_Customer_Address" {Form},

 "RM_Customer_MSTR_ADDR" {Table},

 {RANGE_START} 2 {Operation},

 1 {Key},

 MBS_Status;

if MBS_Status <> OKAY then

 debug str(MBS_Status);

end if;

call with name "MBS_Table_Buffer_Fill" in dictionary 5261,

 0 {Dict},

 "RM_Customer_Address" {Form},

 "RM_Customer_MSTR_ADDR" {Table},

 MBS_Status;

if MBS_Status <> OKAY then

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 527

 debug str(MBS_Status);

end if;

call with name "MBS_Set_Table_Buffer_Value_String" in dictionary 5261,

 0 {Dict},

 "RM_Customer_Address" {Form},

 "RM_Customer_MSTR_ADDR" {Table},

 "'Customer Number'" {Field},

 MBS_String_Value, MBS_Status;

if MBS_Status <> OKAY then

 debug str(MBS_Status);

end if;

call with name "MBS_Table_Buffer_Range" in dictionary 5261,

 0 {Dict},

 "RM_Customer_Address" {Form},

 "RM_Customer_MSTR_ADDR" {Table},

 {RANGE_END} 3 {Operation},

 1 {Key},

 MBS_Status;

if MBS_Status <> OKAY then

 debug str(MBS_Status);

end if;

call with name "MBS_Table_Buffer_Get" in dictionary 5261,

 0 {Dict},

 "RM_Customer_Address" {Form},

 "RM_Customer_MSTR_ADDR" {Table},

 {CHG+FIRST} 21 {Operation},

 1 {Key},

 MBS_Status;

if MBS_Status <> OKAY then

 debug str(MBS_Status);

end if;

while MBS_Status = OKAY do

 call with name "MBS_Get_Table_Buffer_Value_String" in dictionary 5261,

 0 {Dict},

 "RM_Customer_Address" {Form},

 "RM_Customer_MSTR_ADDR" {Table},

 "'Address Code'" {Field},

 MBS_String_Value, MBS_Status;

 if MBS_Status = OKAY then

{ warning str(MBS_String_Value);

} end if;

 case ask("Select action to perform on " + MBS_String_Value, "Save",

"Remove", "Release")

 in [ASKBUTTON1]

 call with name "MBS_Table_Buffer_Save" in dictionary 5261,

 0 {Dict},

 "RM_Customer_Address" {Form},

 "RM_Customer_MSTR_ADDR" {Table},

 MBS_Status;

 if MBS_Status <> OKAY then

C H A P T E R 9 H E L P E R F U N C T I O N S

528 G P P O W E R T O O L S

 debug str(MBS_Status);

 end if;

 in [ASKBUTTON2]

 call with name "MBS_Table_Buffer_Remove" in dictionary 5261,

 0 {Dict},

 "RM_Customer_Address" {Form},

 "RM_Customer_MSTR_ADDR" {Table},

 MBS_Status;

 if MBS_Status <> OKAY then

 debug str(MBS_Status);

 end if;

 else

 call with name "MBS_Table_Buffer_Release" in dictionary 5261,

 0 {Dict},

 "RM_Customer_Address" {Form},

 "RM_Customer_MSTR_ADDR" {Table},

 MBS_Status;

 if MBS_Status <> OKAY then

 debug str(MBS_Status);

 end if;

 end case;

 call with name "MBS_Table_Buffer_Get" in dictionary 5261,

 0 {Dict},

 "RM_Customer_Address" {Form},

 "RM_Customer_MSTR_ADDR" {Table},

 {CHG+NEXT} 23 {Operation},

 1 {Key},

 MBS_Status;

 if MBS_Status <> OKAY then

 debug str(MBS_Status);

 end if;

end while;

call with name "MBS_Table_Buffer_Clear" in dictionary 5261,

 0 {Dict},

 "RM_Customer_Address" {Form},

 "RM_Customer_MSTR_ADDR" {Table},

 MBS_Status;

if MBS_Status <> OKAY then

 debug str(MBS_Status);

end if;

out boolean OUT_Condition;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 529

MBS_Table_Buffer_Clear

This call is used issue a clear table command against the table buffer of a
table associated with any open form in any dictionary.

See full example in the MBS_Table_Buffer_Range helper function section.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Table_Name;

out integer OUT_Status;

An example script is:

local integer l_status;

call with name " MBS_Table_Buffer_Clear" in dictionary 5261,

Dictionary, "Form", "Table", l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

530 G P P O W E R T O O L S

MBS_Table_Buffer_Fill

This call is used issue a fill table command against the table buffer of a
table associated with any open form in any dictionary.

See full example in the MBS_Table_Buffer_Range helper function section.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Table_Name;

out integer OUT_Status;

An example script is:

local integer l_status;

call with name " MBS_Table_Buffer_Fill" in dictionary 5261,

Dictionary, "Form", "Table", l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 531

MBS_Runtime_Execute

This call is used to execute Dexterity sanScript in the context of the
specified dictionary.

The parameter list for this call is:

inout text INOUT_Text;

in integer IN_Prod_ID;

out integer OUT_Status;

An example script is:

local integer l_status;

local text l_text;

local integer l_dict;

clear l_text;

l_text = l_text + "warning ""Hello World"";" + char(13);

l_dict = 0; {Dictionary}

call with name "MBS_Runtime_Execute" in dictionary 5261, l_text,

l_dict, l_status;

if l_status <> OKAY then

 warning l_text;

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

532 G P P O W E R T O O L S

MBS_Runtime_Execute_Background

This call is used to execute Dexterity sanScript in the context of the
specified dictionary after any background processes by adding it to the
background queue.

The parameter list for this call is:

inout text INOUT_Text;

in integer IN_Prod_ID;

out integer OUT_Status;

An example script is:

local integer l_status;

local text l_text;

local integer l_dict;

clear l_text;

l_text = l_text + "warning ""Hello World"";" + char(13);

l_dict = 0; {Dictionary}

call with name "MBS_Runtime_Execute_Background" in dictionary 5261,

l_text, l_dict, l_status;

if l_status <> OKAY then

 warning l_text;

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 533

MBS_Runtime_Execute_Delayed

This call is used to execute Dexterity sanScript in the context of the
specified dictionary after all foreground scripts have completed by
running it delayed.

The parameter list for this call is:

inout text INOUT_Text;

in integer IN_Prod_ID;

out integer OUT_Status;

An example script is:

local integer l_status;

local text l_text;

local integer l_dict;

clear l_text;

l_text = l_text + "warning ""Hello World"";" + char(13);

l_dict = 0; {Dictionary}

call with name "MBS_Runtime_Execute_Delayed" in dictionary 5261,

l_text, l_dict, l_status;

if l_status <> OKAY then

 warning l_text;

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

534 G P P O W E R T O O L S

MBS_Runtime_Execute_After_Background

This call is used to execute Dexterity sanScript in the context of the
specified dictionary in the foreground, but after any background processes
by adding it to the background queue.

The parameter list for this call is:

inout text INOUT_Text;

in integer IN_Prod_ID;

out integer OUT_Status;

An example script is:

local integer l_status;

local text l_text;

local integer l_dict;

clear l_text;

l_text = l_text + "warning ""Hello World"";" + char(13);

l_dict = 0; {Dictionary}

call with name "MBS_Runtime_Execute_After_Background" in dictionary

5261, l_text, l_dict, l_status;

if l_status <> OKAY then

 warning l_text;

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 535

MBS_Runtime_Execute_Modified

This call is used to execute Dexterity sanScript in the context of the
specified modified dictionary.

This allows Dexterity to reference Modifier added local fields.

The parameter list for this call is:

inout text INOUT_Text;

in integer IN_Prod_ID;

out integer OUT_Status;

An example script is:

local integer l_status;

local text l_text;

local integer l_dict;

clear l_text;

l_text = l_text + "warning ""Hello World"";" + char(13);

l_dict = 0; {Dictionary}

call with name "MBS_Runtime_Execute_Modified" in dictionary 5261,

l_text, l_dict, l_status;

if l_status <> OKAY then

 warning l_text;

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

536 G P P O W E R T O O L S

MBS_Runtime_Execute_Modified_Background

This call is used to execute Dexterity sanScript in the context of the
specified modified dictionary after any background processes by adding it
to the background queue.

The parameter list for this call is:

inout text INOUT_Text;

in integer IN_Prod_ID;

out integer OUT_Status;

An example script is:

local integer l_status;

local text l_text;

local integer l_dict;

clear l_text;

l_text = l_text + "warning ""Hello World"";" + char(13);

l_dict = 0; {Dictionary}

call with name "MBS_Runtime_Execute_Modified_Background" in

dictionary 5261, l_text, l_dict, l_status;

if l_status <> OKAY then

 warning l_text;

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 537

MBS_Runtime_Execute_Modified_Delayed

This call is used to execute Dexterity sanScript in the context of the
specified modified dictionary after all foreground scripts have completed
by running it delayed.

The parameter list for this call is:

inout text INOUT_Text;

in integer IN_Prod_ID;

out integer OUT_Status;

An example script is:

local integer l_status;

local text l_text;

local integer l_dict;

clear l_text;

l_text = l_text + "warning ""Hello World"";" + char(13);

l_dict = 0; {Dictionary}

call with name "MBS_Runtime_Execute_Modified_Delayed" in dictionary

5261, l_text, l_dict, l_status;

if l_status <> OKAY then

 warning l_text;

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

538 G P P O W E R T O O L S

MBS_Runtime_Execute_Modified_After_Background

This call is used to execute Dexterity sanScript in the context of the
specified modified dictionary in the foreground, but after any background
processes by adding it to the background queue.

The parameter list for this call is:

inout text INOUT_Text;

in integer IN_Prod_ID;

out integer OUT_Status;

An example script is:

local integer l_status;

local text l_text;

local integer l_dict;

clear l_text;

l_text = l_text + "warning ""Hello World"";" + char(13);

l_dict = 0; {Dictionary}

call with name "MBS_Runtime_Execute_Modified_After_Background" in

dictionary 5261, l_text, l_dict, l_status;

if l_status <> OKAY then

 warning l_text;

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 539

MBS_SQL_Set_Database

This call is used to change the default database from the current Company
database to the specified database. It will only affect the next SQL script to
be executed using Helper Functions.

The parameter list for this call is:

in string IN_DB;

An example script is:

call with name "MBS_SQL_Set_Database" in dictionary 5261,

"<DBNAME>";

C H A P T E R 9 H E L P E R F U N C T I O N S

540 G P P O W E R T O O L S

MBS_SQL_Check_Exists

This call is used to execute a SQL Select statement in the context of the
current company database and indicate whether any data records were
returned.

This helper function has been replaced by the MBS_SQL_Execute Helper
Function.

The text field returned will contain the error message, or the number of
records returned with or without data depending on the options passed
in.

Use the MBS_SQL_Parse_Data series of Helper Functions to easily parse
data back into fields and convert datatypes as required.

The parameter list for this call is:

inout text INOUT_TSQL;

in boolean IN_Return_Data;

in boolean IN_Return_Columns;

out integer OUT_Status;

An example script is:

local integer l_status;

local text l_text;

clear l_text;

l_text = l_text + "select * from table" + char(13);

call with name "MBS_SQL_Check_Exists" in dictionary 5261, l_text,

true, true, l_status;

case l_status

 in [OKAY] {Data}

 warning l_text;

 in [MISSING] {No Data}

 warning l_text;

 in [EOF] {Overflow}

 warning "Overflow" + char(13) + l_text;

 else {Error}

 warning l_text;

end case;

A more complex example of running a query iterating through the
resulting rows and columns is shown in the script below:

local text MBS_Text_Field;

local integer MBS_Status;

local string l_line;

local string l_field;

local integer l_pos, l_old_pos;

local long l_row;

local integer l_column;

local string l_ID, l_Name, l_Contact, l_Address;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 541

call with name "MBS_Script_Load_SQL" in dictionary 5261,

 "CUSTOMERS", MBS_Text_Field;

call with name "MBS_SQL_Check_Exists" in dictionary 5261,

 MBS_Text_Field, true {Return Data}, false {Show Names}, MBS_Status;

case MBS_Status

 in [OKAY] {Data}

{ warning MBS_Text_Field;

} l_row = 0;

 l_pos = 1;

 repeat

 l_old_pos = l_pos;

 l_pos = pos(MBS_Text_Field, char(13), l_old_pos);

 if l_pos > 0 then

 l_line = substring(MBS_Text_Field, l_old_pos, min(255, l_pos-l_old_pos));

 l_pos = l_pos + 1;

 if not empty(l_line) then

 increment l_row;

 clear l_ID, l_Name, l_Contact, l_Address;

 for l_column = 1 to 4 do

 l_field = trim(RW_Token(l_line, char(9), l_column));

 case l_column

 in [1]

 l_ID = l_field;

 in [2]

 l_Name = l_field;

 in [3]

 l_Contact = l_field;

 in [4]

 l_Address = l_field;

 else

 end case;

 end for;

 warning text("Record: " + str(l_row) + char(13) + "ID: " + l_ID + char(13)

 + "Name: " + l_Name + char(13) + "Contact: " + l_Contact + char(13)

 + "Address: " + l_Address + char(13));

 end if;

 end if;

 until l_pos = 0 or empty(l_line);

 in [MISSING] {No Data}

 warning MBS_Text_Field;

 in [EOF] {Overflow}

 warning "Overflow" + char(13) + MBS_Text_Field;

 else {Error}

 warning MBS_Text_Field;

end case;

C H A P T E R 9 H E L P E R F U N C T I O N S

542 G P P O W E R T O O L S

Note that conversion of string formatted data back to other data types
should now use the MBS_Convert series of Helper Functions rather than
use the manually code examples below.

Below are examples showing how to manually convert the string
formatted data back to other data types:

{ Example Code for other Datatypes }

local integer l_Integer;

l_Integer = integer(value(l_field));

local currency l_Currency;

l_Currency = currency(value(l_field));

local boolean l_Boolean;

l_Boolean = (upper(l_field) = TRUE_STRING); { When stored as TRUE or FALSE }

l_Boolean = (value(l_field) <> 0); { When stored as 0 or 1 }

local integer l_year, l_month, l_day;

local date l_Date;

l_year = integer(value(substring(l_field, 1, 4)));

l_month = integer(value(substring(l_field, 6, 2)));

l_day = integer(value(substring(l_field, 9, 2)));

l_Date = mkdate(l_month, l_day, l_year); { Where Date in 'YYYY/MM/DD' format }

local integer l_hour, l_minute, l_second, l_pos;

local time l_Time;

l_pos = pos(l_field, CH_COLON, 1); { Find colon in Datetime string }

l_hour = integer(value(substring(l_field, l_pos-2, 2)));

l_minute = integer(value(substring(l_field, l_pos+1, 2)));

l_second = integer(value(substring(l_field, l_pos+4, 2)));

l_Time = mktime(l_hour, l_minute, l_second); { Where Time in 'HH:MM:SS' format }

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 543

MBS_SQL_Execute

This call is used to execute a SQL Select statement in the context of the
selected database and indicate whether any data records were returned.

This helper function replaces the MBS_SQL_Check_Exists Helper
Function.

The text field returned will contain the error message, or the number of
records returned with or without data depending on the options passed
in.

Use the MBS_SQL_Parse_Data series of Helper Functions to easily parse
data back into fields and convert datatypes as required.

The parameter list for this call is:

inout text INOUT_TSQL;

in string IN_DB;

in boolean IN_Return_Data;

in boolean IN_Return_Columns;

out integer OUT_Status;

An example script is:

local integer l_status;

local text l_text;

local string l_db;

l_db = 'Intercompany ID' of globals;

clear l_text;

l_text = l_text + "select * from table" + char(13);

call with name "MBS_SQL_Execute" in dictionary 5261, l_text, l_db,

true, true, l_status;

case l_status

 in [OKAY] {Data}

 warning l_text;

 in [MISSING] {No Data}

 warning l_text;

 in [EOF] {Overflow}

 warning "Overflow" + char(13) + l_text;

 else {Error}

 warning l_text;

end case;

C H A P T E R 9 H E L P E R F U N C T I O N S

544 G P P O W E R T O O L S

An example of running a query iterating through the resulting rows and
columns is shown in the script below:

local text MBS_Text_Field;

local integer MBS_Status;

local string MBS_Database;

local integer l_row;

local string l_ID, l_Name, l_Contact, l_Address;

local string MBS_SQL_String_Value;

call with name "MBS_Script_Load_SQL_DB" in dictionary 5261, "CUSTOMERS",

 MBS_Text_Field, MBS_Database;

call with name "MBS_SQL_Execute" in dictionary 5261,

 MBS_Text_Field, MBS_Database, true {Return Data}, false {Show Names}, MBS_Status;

case MBS_Status

 in [OKAY] {Data}

{ warning MBS_Text_Field;

} l_row = 0;

 repeat

 call with name "MBS_SQL_Parse_Data_String" in dictionary 5261, MBS_Text_Field,.

 l_row+1 {Row}, 1 {Col}, MBS_SQL_String_Value, MBS_Status;

 if MBS_Status = OKAY then

 increment l_row;

 l_ID = MBS_SQL_String_Value;

 call with name "MBS_SQL_Parse_Data_String" in dictionary 5261, MBS_Text_Field,

 l_row {Row}, 2 {Col}, MBS_SQL_String_Value, MBS_Status;

 l_Name = MBS_SQL_String_Value;

 call with name "MBS_SQL_Parse_Data_String" in dictionary 5261, MBS_Text_Field,

 l_row {Row}, 3 {Col}, MBS_SQL_String_Value, MBS_Status;

 l_Contact = MBS_SQL_String_Value;

 call with name "MBS_SQL_Parse_Data_String" in dictionary 5261, MBS_Text_Field,

 l_row {Row}, 4 {Col}, MBS_SQL_String_Value, MBS_Status;

 l_Address = MBS_SQL_String_Value;

 warning text("Record: " + str(l_row) + char(13) + "ID: " + l_ID + char(13)

 + "Name: " + l_Name + char(13) + "Contact: " + l_Contact + char(13)

 + "Address: " + l_Address + char(13));

 end if;

 until MBS_Status <> OKAY;

 in [MISSING] {No Data}

 warning MBS_Text_Field;

 in [EOF] {Overflow}

 warning "Overflow" + char(13) + MBS_Text_Field;

 else {Error}

 warning MBS_Text_Field;

end case;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 545

MBS_SQL_Get_Data

This call is used to execute a SQL Select statement in the context of the
selected database and indicate whether any data records were returned.

This helper function uses SQL Server to format the data into a tab
delimited data set. It can be up to 10 times faster than the
MBS_SQL_Check_Exists or MBS_SQL_Execute Helper Functions.

The text field returned will only contain the data returned without any
header row.

Use the MBS_SQL_Parse_Data series of Helper Functions to easily parse
data back into fields and convert datatypes as required.

The parameter list for this call is:

inout text INOUT_TSQL;

in string IN_DB;

out integer OUT_Status;

An example script is:

local integer l_status;

local text l_text;

local string l_db;

l_db = 'Intercompany ID' of globals;

clear l_text;

l_text = l_text + "select * from table" + char(13);

call with name "MBS_SQL_Get_Data" in dictionary 5261, l_text, l_db,

l_status;

case l_status

 in [OKAY] {Data}

 warning l_text;

 in [MISSING] {No Data}

 warning l_text;

 in [EOF] {Overflow}

 warning "Overflow" + char(13) + l_text;

 else {Error}

 warning l_text;

end case;

C H A P T E R 9 H E L P E R F U N C T I O N S

546 G P P O W E R T O O L S

An example of running a query iterating through the resulting rows and
columns is shown in the script below:

local text MBS_Text_Field;

local integer MBS_Status;

local string MBS_Database;

local integer l_row;

local string l_ID, l_Name, l_Contact, l_Address;

local string MBS_SQL_String_Value;

call with name "MBS_Script_Load_SQL_DB" in dictionary 5261, "CUSTOMERS",

 MBS_Text_Field, MBS_Database;

call with name "MBS_SQL_Get_Data" in dictionary 5261, MBS_Text_Field, MBS_Database, MBS_Status;

case MBS_Status

 in [OKAY] {Data}

{ warning MBS_Text_Field;

} l_row = 0;

 repeat

 call with name "MBS_SQL_Parse_Data_String" in dictionary 5261, MBS_Text_Field,.

 l_row+1 {Row}, 1 {Col}, MBS_SQL_String_Value, MBS_Status;

 if MBS_Status = OKAY then

 increment l_row;

 l_ID = MBS_SQL_String_Value;

 call with name "MBS_SQL_Parse_Data_String" in dictionary 5261, MBS_Text_Field,

 l_row {Row}, 2 {Col}, MBS_SQL_String_Value, MBS_Status;

 l_Name = MBS_SQL_String_Value;

 call with name "MBS_SQL_Parse_Data_String" in dictionary 5261, MBS_Text_Field,

 l_row {Row}, 3 {Col}, MBS_SQL_String_Value, MBS_Status;

 l_Contact = MBS_SQL_String_Value;

 call with name "MBS_SQL_Parse_Data_String" in dictionary 5261, MBS_Text_Field,

 l_row {Row}, 4 {Col}, MBS_SQL_String_Value, MBS_Status;

 l_Address = MBS_SQL_String_Value;

 warning text("Record: " + str(l_row) + char(13) + "ID: " + l_ID + char(13)

 + "Name: " + l_Name + char(13) + "Contact: " + l_Contact + char(13)

 + "Address: " + l_Address + char(13));

 end if;

 until MBS_Status <> OKAY;

 in [MISSING] {No Data}

 warning MBS_Text_Field;

 in [EOF] {Overflow}

 warning "Overflow" + char(13) + MBS_Text_Field;

 else {Error}

 warning MBS_Text_Field;

end case;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 547

MBS_SQL_Parse_Data

This call is used to parse a field of any datatype from a tab delimited data
field.

It can be used with the MBS_SQL_Check_Exists, MBS_SQL_Execute,
MBS_SQL_Get_Data and MBS_Copy_From_Clipboard Helper Functions.

The parameter list for this call is:

in text IN_Text;

in integer IN_Row;

in integer IN_Col;

out anonymous field OUT_Data;

out integer OUT_Status;

An example script is:

local integer l_status;

local text l_text;

local string l_data;

call with name "MBS_SQL_Parse_Data" in dictionary 5261, l_text, 1

{Row}, 1 {Col}, l_data, l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

548 G P P O W E R T O O L S

MBS_SQL_Parse_Data_Boolean

This call is used to parse a Boolean field from a tab delimited data field.

It can be used with the MBS_SQL_Check_Exists, MBS_SQL_Execute,
MBS_SQL_Get_Data and MBS_Copy_From_Clipboard Helper Functions.

The parameter list for this call is:

in text IN_Text;

in integer IN_Row;

in integer IN_Col;

out boolean OUT_Boolean;

out integer OUT_Status;

An example script is:

local integer l_status;

local text l_text;

local boolean l_data;

call with name "MBS_SQL_Parse_Data_Boolean" in dictionary 5261,

l_text, 1 {Row}, 1 {Col}, l_data, l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 549

MBS_SQL_Parse_Data_Currency

This call is used to parse a Currency field from a tab delimited data field.

It can be used with the MBS_SQL_Check_Exists, MBS_SQL_Execute,
MBS_SQL_Get_Data and MBS_Copy_From_Clipboard Helper Functions.

The parameter list for this call is:

in text IN_Text;

in integer IN_Row;

in integer IN_Col;

out currency OUT_Currency;

out integer OUT_Status;

An example script is:

local integer l_status;

local text l_text;

local currency l_data;

call with name "MBS_SQL_Parse_Data_Currency" in dictionary 5261,

l_text, 1 {Row}, 1 {Col}, l_data, l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

550 G P P O W E R T O O L S

MBS_SQL_Parse_Data_Date

This call is used to parse a Date field from a tab delimited data field.

It can be used with the MBS_SQL_Check_Exists, MBS_SQL_Execute,
MBS_SQL_Get_Data and MBS_Copy_From_Clipboard Helper Functions.

The parameter list for this call is:

in text IN_Text;

in integer IN_Row;

in integer IN_Col;

out date OUT_Date;

out integer OUT_Status;

An example script is:

local integer l_status;

local text l_text;

local date l_data;

call with name "MBS_SQL_Parse_Data_Date" in dictionary 5261, l_text,

1 {Row}, 1 {Col}, l_data, l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 551

MBS_SQL_Parse_Data_Datetime

This call is used to parse a Datetime field from a tab delimited data field.

It can be used with the MBS_SQL_Check_Exists, MBS_SQL_Execute,
MBS_SQL_Get_Data and MBS_Copy_From_Clipboard Helper Functions.

The parameter list for this call is:

in text IN_Text;

in integer IN_Row;

in integer IN_Col;

out datetime OUT_Datetime;

out integer OUT_Status;

An example script is:

local integer l_status;

local text l_text;

local datetime l_data;

call with name "MBS_SQL_Parse_Data_Datetime" in dictionary 5261,

l_text, 1 {Row}, 1 {Col}, l_data, l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

552 G P P O W E R T O O L S

MBS_SQL_Parse_Data_Integer

This call is used to parse an Integer field from a tab delimited data field.

It can be used with the MBS_SQL_Check_Exists, MBS_SQL_Execute,
MBS_SQL_Get_Data and MBS_Copy_From_Clipboard Helper Functions.

The parameter list for this call is:

in text IN_Text;

in integer IN_Row;

in integer IN_Col;

out integer OUT_Integer;

out integer OUT_Status;

An example script is:

local integer l_status;

local text l_text;

local integer l_data;

call with name "MBS_SQL_Parse_Data_Integer" in dictionary 5261,

l_text, 1 {Row}, 1 {Col}, l_data, l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 553

MBS_SQL_Parse_Data_Long

This call is used to parse a Long field from a tab delimited data field.

It can be used with the MBS_SQL_Check_Exists, MBS_SQL_Execute,
MBS_SQL_Get_Data and MBS_Copy_From_Clipboard Helper Functions.

The parameter list for this call is:

in text IN_Text;

in integer IN_Row;

in integer IN_Col;

out long OUT_Long;

out integer OUT_Status;

An example script is:

local integer l_status;

local text l_text;

local long l_data;

call with name "MBS_SQL_Parse_Data_Long" in dictionary 5261, l_text,

1 {Row}, 1 {Col}, l_data, l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

554 G P P O W E R T O O L S

MBS_SQL_Parse_Data_String

This call is used to parse a String field from a tab delimited data field.

It can be used with the MBS_SQL_Check_Exists, MBS_SQL_Execute,
MBS_SQL_Get_Data and MBS_Copy_From_Clipboard Helper Functions.

The parameter list for this call is:

in text IN_Text;

in integer IN_Row;

in integer IN_Col;

out string OUT_String;

out integer OUT_Status;

An example script is:

local integer l_status;

local text l_text;

local string l_data;

call with name "MBS_SQL_Parse_Data_String" in dictionary 5261,

l_text, 1 {Row}, 1 {Col}, l_data, l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 555

MBS_SQL_Parse_Data_Text

This call is used to parse a Text field from a tab delimited data field.

It can be used with the MBS_SQL_Check_Exists, MBS_SQL_Execute,
MBS_SQL_Get_Data and MBS_Copy_From_Clipboard Helper Functions.

The parameter list for this call is:

in text IN_Text;

in integer IN_Row;

in integer IN_Col;

out text OUT_Text;

out integer OUT_Status;

An example script is:

local integer l_status;

local text l_text;

local text l_data;

call with name "MBS_SQL_Parse_Data_Text" in dictionary 5261, l_text,

1 {Row}, 1 {Col}, l_data, l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

556 G P P O W E R T O O L S

MBS_SQL_Parse_Data_Time

This call is used to parse a Time field from a tab delimited data field.

It can be used with the MBS_SQL_Check_Exists, MBS_SQL_Execute,
MBS_SQL_Get_Data and MBS_Copy_From_Clipboard Helper Functions.

The parameter list for this call is:

in text IN_Text;

in integer IN_Row;

in integer IN_Col;

out time OUT_Time;

out integer OUT_Status;

An example script is:

local integer l_status;

local text l_text;

local time l_data;

call with name "MBS_SQL_Parse_Data_Time" in dictionary 5261, l_text,

1 {Row}, 1 {Col}, l_data, l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 557

MBS_SQL_Parse_Data_VCurrency

This call is used to parse a VCurrency field from a tab delimited data field.

It can be used with the MBS_SQL_Check_Exists, MBS_SQL_Execute,
MBS_SQL_Get_Data and MBS_Copy_From_Clipboard Helper Functions.

The parameter list for this call is:

in text IN_Text;

in integer IN_Row;

in integer IN_Col;

out vcurrency OUT_VCurrency;

out integer OUT_Status;

An example script is:

local integer l_status;

local text l_text;

local vcurrency l_data;

call with name "MBS_SQL_Parse_Data_VCurrency" in dictionary 5261,

l_text, 1 {Row}, 1 {Col}, l_data, l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

558 G P P O W E R T O O L S

MBS_SQL_Parse_Data_Reset

This call is used to reset the counters used when parsing tab delimited
data in a text field, so that the parsing starts at the start of the text field.

It is called automatically and so is not required when used with the
MBS_SQL_Check_Exists, MBS_SQL_Execute, MBS_SQL_Get_Data and
MBS_Copy_From_Clipboard Helper Functions.

The parameter list for this call is:

<None>;

An example script is:

call with name "MBS_SQL_Parse_Data_Reset" in dictionary 5261;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 559

MBS_Export_SQL_Query_To_File

This call is used to execute a SQL Select statement in the context of the
current company database and export the result set as a text file.

The parameter list for this call is:

inout text INOUT_Code;

inout string INOUT_Pathname;

in boolean IN_Header;

in boolean IN_Quotes;

in integer IN_Mode; { 0 - CSV, 1 - Tab, 2 - User Defined }

in string IN_Delimiter;

in boolean IN_Append;

out long OUT_Rows;

out integer OUT_Status;

An example script is:

local integer l_status;

local text l_text;

local string l_path;

local long l_rows;

clear l_text;

l_text = l_text + "select * from table" + char(13);

call with name "MBS_Export_SQL_Query_To_File" in dictionary 5261,

l_text, l_path, true {Header}, true {Quotes}, 0 {CSV}, ""

{Delimiter}, false, {Append}, l_rows, l_status;

if l_status = OKAY then

 l_text = str(l_rows) + " rows exported to " + l_path + ".";

 warning l_text;

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

560 G P P O W E R T O O L S

MBS_SQL_Results

This call is used to execute a SQL Select statement in the context of the
current company database and display the results returned in a SQL
Results window. The results can be exported from this window if desired.

The parameter list for this call is:

inout text INOUT_TSQL;

An example script is:

local text l_text;

clear l_text;

l_text = l_text + "select * from table" + char(13);

call with name "MBS_SQL_Results" in dictionary 5261, l_text;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 561

MBS_SQL_Results_Immediate

This call is used to execute a SQL Select statement in the context of the
current company database and display the results returned in a SQL
Results window. The results can be exported from this window if desired.

The Immediate version of this call displays the result set immediately
instead of delayed and so is useful if you want to display data within a
script and ask for the next action using a system dialog.

The parameter list for this call is:

inout text INOUT_TSQL;

An example script is:

local text l_text;

clear l_text;

l_text = l_text + "select * from table" + char(13);

call with name "MBS_SQL_Results_Immediate" in dictionary 5261,

l_text;

C H A P T E R 9 H E L P E R F U N C T I O N S

562 G P P O W E R T O O L S

MBS_SQL_Results_Goto

This call is used to execute a SQL Select statement in the context of the
current company database and display the results returned in a SQL
Results window. The results can be exported from this window if desired
or further actions can be started using the SQL Gotos.

The parameter list for this call is:

inout text INOUT_TSQL;

in string IN_ScriptID;

An example script is:

local text l_text;

clear l_text;

l_text = l_text + "select * from table" + char(13);

call with name "MBS_SQL_Results_Goto" in dictionary 5261, l_text,

"ScriptID";

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 563

MBS_SQL_Results_Immediate_Goto

This call is used to execute a SQL Select statement in the context of the
current company database and display the results returned in a SQL
Results window. The results can be exported from this window if desired
or further actions can be started using the SQL Gotos.

The Immediate version of this call displays the result set immediately
instead of delayed and so is useful if you want to display data within a
script and ask for the next action using a system dialog.

The parameter list for this call is:

inout text INOUT_TSQL;

in string IN_ScriptID;

An example script is:

local text l_text;

clear l_text;

l_text = l_text + "select * from table" + char(13);

call with name "MBS_SQL_Results_Immediate_Goto" in dictionary 5261,

l_text, "ScriptID";

C H A P T E R 9 H E L P E R F U N C T I O N S

564 G P P O W E R T O O L S

MBS_SQL_Results_Close

This call is to close the SQL Results window.

The parameter list for this call is:

<None>

An example script is:

call with name "MBS_SQL_Results_Close" in dictionary 5261;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 565

MBS_SQL_Results2

This call is used to execute a SQL Select statement in the context of the
current company database and display the results returned in a second
SQL Results 2 window. The results can be exported from this window if
desired.

The parameter list for this call is:

inout text INOUT_TSQL;

An example script is:

local text l_text;

clear l_text;

l_text = l_text + "select * from table" + char(13);

call with name "MBS_SQL_Results2" in dictionary 5261, l_text;

C H A P T E R 9 H E L P E R F U N C T I O N S

566 G P P O W E R T O O L S

MBS_SQL_Results_Immediate2

This call is used to execute a SQL Select statement in the context of the
current company database and display the results returned in a second
SQL Results 2 window. The results can be exported from this window if
desired.

The Immediate version of this call displays the result set immediately
instead of delayed and so is useful if you want to display data within a
script and ask for the next action using a system dialog.

The parameter list for this call is:

inout text INOUT_TSQL;

An example script is:

local text l_text;

clear l_text;

l_text = l_text + "select * from table" + char(13);

call with name "MBS_SQL_Results_Immediate2" in dictionary 5261,

l_text;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 567

MBS_SQL_Results_Goto2

This call is used to execute a SQL Select statement in the context of the
current company database and display the results returned in a second
SQL Results 2 window. The results can be exported from this window if
desired or further actions can be started using the SQL Gotos.

The parameter list for this call is:

inout text INOUT_TSQL;

in string IN_ScriptID;

An example script is:

local text l_text;

clear l_text;

l_text = l_text + "select * from table" + char(13);

call with name "MBS_SQL_Results_Goto2" in dictionary 5261, l_text,

"ScriptID";

C H A P T E R 9 H E L P E R F U N C T I O N S

568 G P P O W E R T O O L S

MBS_SQL_Results_Immediate_Goto2

This call is used to execute a SQL Select statement in the context of the
current company database and display the results returned in a second
SQL Results 2 window. The results can be exported from this window if
desired or further actions can be started using the SQL Gotos.

The Immediate version of this call displays the result set immediately
instead of delayed and so is useful if you want to display data within a
script and ask for the next action using a system dialog.

The parameter list for this call is:

inout text INOUT_TSQL;

in string IN_ScriptID;

An example script is:

local text l_text;

clear l_text;

l_text = l_text + "select * from table" + char(13);

call with name "MBS_SQL_Results_Immediate_Goto2" in dictionary 5261,

l_text, "ScriptID";

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 569

MBS_SQL_Results_Close2

This call is to close the second SQL Results 2 window.

The parameter list for this call is:

<None>

An example script is:

call with name "MBS_SQL_Results_Close2" in dictionary 5261;

C H A P T E R 9 H E L P E R F U N C T I O N S

570 G P P O W E R T O O L S

MBS_SQL_Goto_Get_Data

This call is used in a Runtime Execute Setup script to retrieve data from a
SQL result set for use with SQL Gotos.

The parameter list for this call is:

in integer IN_Window;

in long IN_Position;

in string IN_Column;

in integer IN_Type; { 1 = string, 2 = long, 3 = currency, 4 = date, 5 = time }

out anonymous field OUT_Field;

An example script is:

in integer MBS_SQLGotoWindow;

in long MBS_SQLGotoCount;

local long MBS_SQLGotoPos;

local string MBS_SQLGotoValue1;

local string MBS_Message;

if MBS_SQLGotoCount > 0 then

 for MBS_SQLGotoPos = 1 to MBS_SQLGotoCount do

 call with name "MBS_SQL_Goto_Get_Data" in dictionary 5261,

 MBS_SQLGotoWindow, MBS_SQLGotoPos, "Customer ID" { Column Label },

 1 { Column Datatype: 1 = string, 2 = long, 3 = currency, 4 = date, 5 = time },

 MBS_SQLGotoValue1;

 end for;

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 571

MBS_SQL_Goto_Close

This call is used in a Runtime Execute Setup script to close or clear the SQL
result set for use with SQL Gotos.

The parameter list for this call is:

in integer IN_Window;

An example script is:

in integer MBS_SQLGotoWindow;

call with name "MBS_SQL_Goto_Close" in dictionary 5261, MBS_SQLGotoWindow;

C H A P T E R 9 H E L P E R F U N C T I O N S

572 G P P O W E R T O O L S

MBS_SQL_Sort_Get

This call is used in a Runtime Execute Setup script to read the current sort
column for a result set for use with SQL Gotos.

This Helper Function can be called from a SQL Goto script running with
the Goto Mode. of Before Close to get the current sort column and order
values so they can saved to be used later.

The parameter list for this call is:

in integer IN_Window;

out string OUT_Column;

out integer OUT_Mode; {0 = Ascending, 1 = Descending}

An example script is:

in integer MBS_SQLGotoWindow;

local string l_column;

local integer l_mode;

call with name "MBS_SQL_Sort_Get" in dictionary 5261, MBS_SQLGotoWindow, l_column, l_mode;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 573

MBS_SQL_Sort_Set

This call is used in a Runtime Execute Setup script to change the current
sort column for a result set for use with SQL Gotos.

This Helper Function can be called from a SQL Goto script running with
the Goto Mode. of After Query to set the current sort column and order
based on previously saved values.

The parameter list for this call is:

in integer IN_Window;

in string OUT_Column;

in integer OUT_Mode; {0 = Ascending, 1 = Descending}

An example script is:

in integer MBS_SQLGotoWindow;

call with name "MBS_SQL_Sort_Set" in dictionary 5261, MBS_SQLGotoWindow, "Customer ID", 0;

C H A P T E R 9 H E L P E R F U N C T I O N S

574 G P P O W E R T O O L S

MBS_SQL_Export_Data

This call is used in a Runtime Execute Setup script to export the SQL result
set to a text field for use with SQL Gotos.

If exported as tab delimited using the TABFILE mode, you can parse the
resulting data with the SQL Parsing helper functions.

If exported as HTML using the HTMLFILE mode, you can use result set in
an email using the MBS_Email_API as long as the email is in HTML mode.
Use TABFILE mode if not sending emails using HTML.

The parameter list for this call is:

in integer IN_Window;

in integer IN_FileMode; {TABFILE = 6, COMMAFILE = 7, HTMLFILE = 12}

out text OUT_Text;

out integer OUT_Status;

in boolean IN_Selected; {true = Selected only, false = all records}

An example script is:

in integer MBS_SQLGotoWindow;

local text l_text;

call with name "MBS_SQL_Export_Data" in dictionary 5261, MBS_SQLGotoWindow, TABFILE,

l_text, l_status, true;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 575

MBS_Net_Execute

This call is used to execute .Net scripts (Visual C# or Visual Basic.Net).

The parameter list for this call is:

in integer IN_Mode;

inout text INOUT_References;

inout text INOUT_Script;

inout text INOUT_Results;

out boolean OUT_Success;

An example Visual C# script is:

local integer MBS_Mode;

local text MBS_References;

local text MBS_Script;

local text MBS_Results;

local boolean MBS_Success;

MBS_Success = false;

MBS_Mode = 1; {1 for C#, 2 for VB}

clear MBS_Script;

MBS_Script = MBS_Script + "using System.Windows.Forms;" + char(13);

MBS_Script = MBS_Script + "using Microsoft.Dexterity.Bridge;" + char(13);

MBS_Script = MBS_Script + "using Microsoft.Dexterity.Applications;" + char(13);

MBS_Script = MBS_Script + "using Microsoft.Dexterity.Applications.DynamicsDictionary;" + char(13);

MBS_Script = MBS_Script + "using Microsoft.Dexterity.Applications.GpPowerToolsDictionary;" + char(13);

MBS_Script = MBS_Script + "namespace NetExecute" + char(13);

MBS_Script = MBS_Script + "{" + char(13);

MBS_Script = MBS_Script + " public class Program" + char(13);

MBS_Script = MBS_Script + " {" + char(13);

MBS_Script = MBS_Script + " public void Run()" + char(13);

MBS_Script = MBS_Script + " {" + char(13);

MBS_Script = MBS_Script + " MessageBox.Show(""Hello from C#"");" + char(13);

MBS_Script = MBS_Script + " }" + char(13);

MBS_Script = MBS_Script + " }" + char(13);

MBS_Script = MBS_Script + "}" + char(13);

clear MBS_References;

MBS_References = MBS_References + "System.Windows.Forms.dll" + char(13);

MBS_References = MBS_References + "..\Application.Dynamics.dll" + char(13);

MBS_References = MBS_References + "..\Microsoft.Dexterity.Bridge.dll" + char(13);

MBS_References = MBS_References + "..\Microsoft.Dexterity.Shell.dll" + char(13);

MBS_References = MBS_References + "..\Application.GpPowerTools.dll" + char(13);

call with name "MBS_Net_Execute" in dictionary 5261,

 MBS_Mode, MBS_References, MBS_Script, MBS_Results, MBS_Success;

if not MBS_Success then

 warning MBS_Results;

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

576 G P P O W E R T O O L S

An example Visual Basic.Net script is:

local integer MBS_Mode;

local text MBS_References;

local text MBS_Script;

local text MBS_Results;

local boolean MBS_Success;

MBS_Success = false;

MBS_Mode = 2; {1 for C#, 2 for VB}

clear MBS_Script;

MBS_Script = MBS_Script + "Imports System.Windows.Forms" + char(13);

MBS_Script = MBS_Script + "Imports Microsoft.VisualBasic" + char(13);

MBS_Script = MBS_Script + "Imports Microsoft.Dexterity.Bridge" + char(13);

MBS_Script = MBS_Script + "Imports Microsoft.Dexterity.Applications" + char(13);

MBS_Script = MBS_Script + "Imports Microsoft.Dexterity.Applications.DynamicsDictionary" + char(13);

MBS_Script = MBS_Script + "Imports Microsoft.Dexterity.Applications.GpPowerToolsDictionary" + char(13);

MBS_Script = MBS_Script + "Namespace NetExecute" + char(13);

MBS_Script = MBS_Script + " Class Program" + char(13);

MBS_Script = MBS_Script + " Public Function Run() As Object" + char(13);

MBS_Script = MBS_Script + " MessageBox.Show(""Hello from VB.Net"")" + char(13);

MBS_Script = MBS_Script + " End Function" + char(13);

MBS_Script = MBS_Script + " End Class" + char(13);

MBS_Script = MBS_Script + "End Namespace" + char(13);

clear MBS_References;

MBS_References = MBS_References + "System.Windows.Forms.dll" + char(13);

MBS_References = MBS_References + "..\Application.Dynamics.dll" + char(13);

MBS_References = MBS_References + "..\Microsoft.Dexterity.Bridge.dll" + char(13);

MBS_References = MBS_References + "..\Microsoft.Dexterity.Shell.dll" + char(13);

MBS_References = MBS_References + "..\Application.GpPowerTools.dll" + char(13);

call with name "MBS_Net_Execute" in dictionary 5261,

 MBS_Mode, MBS_References, MBS_Script, MBS_Results, MBS_Success;

if not MBS_Success then

 warning MBS_Results;

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 577

MBS_Script_Load_Dex

This call is used to load a Dexterity sanScript script from a Runtime
Execute Setup Script ID. It is designed to be used with the
MBS_Runtime_Execute Helper Function.

The parameter list for this call is:

in string IN_ScriptID;

inout text INOUT_Text;

inout integer INOUT_Dict;

An example script is:

local text l_text;

local integer l_dict;

call with name "MBS_Script_Load_Dex" in dictionary 5261, "XXXX",

l_text, l_dict;

C H A P T E R 9 H E L P E R F U N C T I O N S

578 G P P O W E R T O O L S

MBS_Script_Load_SQL

This call is used to load a SQL script from a SQL Execute Setup Script ID.
It is designed to be used with the MBS_SQL_Check_Exists Helper
Function.

This helper function has been replaced by the MBS_Script_Load_SQL_DB
Helper Function.

The parameter list for this call is:

in string IN_ScriptID;

inout text INOUT_Text;

An example script is:

local text l_text;

call with name "MBS_Script_Load_SQL" in dictionary 5261, "XXXX",

l_text;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 579

MBS_Script_Load_SQL_DB

This call is used to load a SQL script and Database context from a SQL
Execute Setup Script ID. It is designed to be used with the
MBS_SQL_Execute Helper Function.

This helper function replaces the MBS_Script_Load_SQL Helper Function.

The parameter list for this call is:

in string IN_ScriptID;

inout text INOUT_Text;

out string OUT_DB;;

An example script is:

local text l_text;

local string l_db;

call with name "MBS_Script_Load_SQL_DB" in dictionary 5261, "XXXX",

l_text, l_db;

C H A P T E R 9 H E L P E R F U N C T I O N S

580 G P P O W E R T O O L S

MBS_Script_Load_Net

This call is used to load a Visual C# or Visual Basic.Net script from a .Net
Execute Setup Script ID. It is designed to be used with the
MBS_Net_Execute Helper Function.

The parameter list for this call is:

in string IN_ScriptID;

out integer IN_Mode;

inout text INOUT_References;

inout text INOUT_Script;

An example script is:

local integer MBS_Mode;

local text MBS_References;

local text MBS_Script;

call with name "MBS_Script_Load_Net" in dictionary 5261,

 "XXXX", MBS_Mode, MBS_References, MBS_Script;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 581

MBS_Param_Set

This call is used to store a value in the DUOS SY_User_Object_Store
(SY90000) table which can then be read by another script. It is designed to
be used with the MBS_Runtime_Execute and MBS_Param_Get Helper
Functions as a method of passing parameters.

The parameter list for this call is:

in string IN_Parameter;

in string IN_Value;

An example script is:

local string l_string;

l_string = "Value";

call with name "MBS_Param_Set" in dictionary 5261, "Variable",

l_string;

C H A P T E R 9 H E L P E R F U N C T I O N S

582 G P P O W E R T O O L S

MBS_Param_Get

This call is used to read a previously set value from the DUOS
SY_User_Object_Store (SY90000) table. It is designed to be used with the
MBS_Runtime_Execute and MBS_Param_Set Helper Functions as a
method of passing parameters.

The parameter list for this call is:

in string IN_Parameter;

out string OUT_Value;

An example script is:

local string l_string;

call with name "MBS_Param_Get" in dictionary 5261, "Variable",

l_string;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 583

MBS_Param_Del

This call is used to remove a previously set value from the DUOS
SY_User_Object_Store (SY90000) table. It is designed to be used with the
MBS_Runtime_Execute and MBS_Param_Set Helper Functions as a
method of passing parameters.

The parameter list for this call is:

in string IN_Parameter;

An example script is:

call with name "MBS_Param_Del" in dictionary 5261, "Variable";

C H A P T E R 9 H E L P E R F U N C T I O N S

584 G P P O W E R T O O L S

MBS_Param_DelAll

This call is used to remove all previously stored parameter values for the
current user from the DUOS SY_User_Object_Store (SY90000) table. It is
designed to be used with the MBS_Runtime_Execute and MBS_Param_Set
Helper Functions.

There is no parameter list for this call.

An example script is:

call with name "MBS_Param_DelAll" in dictionary 5261;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 585

MBS_Memory_Set

This call is used to store a value in a memory variable slot which can then
be read by another script. It is designed to be used with the
MBS_Runtime_Execute and MBS_Memory_Get Helper Functions as a
method of storing data for longer than the current script’s scope or passing
parameters. You can store up to 100 different variables of each datatype.

String data can be up to 132 characters per variable.

The parameter list for this call is:

in string IN_Parameter;

in anonymous field IN_Value;

An example script is:

local string l_value;

l_value = "Value";

call with name "MBS_Memory_Set" in dictionary 5261, "Variable",

l_value;

C H A P T E R 9 H E L P E R F U N C T I O N S

586 G P P O W E R T O O L S

MBS_Memory_Set_Boolean

This call is used to store a boolean value in a memory variable slot which
can then be read by another script. It is designed to be used with the
MBS_Runtime_Execute and MBS_Memory_Get_Boolean Helper Functions
as a method of storing data for longer than the current script’s scope or
passing parameters. You can store up to 100 different variables of each
datatype.

The parameter list for this call is:

in string IN_Parameter;

in boolean IN_Value;

An example script is:

local boolean l_value;

l_value = true

call with name "MBS_Memory_Set_Boolean" in dictionary 5261,

"Variable", l_value;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 587

MBS_Memory_Set_Currency

This call is used to store a currency value in a memory variable slot which
can then be read by another script. It is designed to be used with the
MBS_Runtime_Execute and MBS_Memory_Get_Currency Helper
Functions as a method of storing data for longer than the current script’s
scope or passing parameters. You can store up to 100 different variables of
each datatype.

The parameter list for this call is:

in string IN_Parameter;

in currency IN_Value;

An example script is:

local currency l_value;

l_value = 0.00;

call with name "MBS_Memory_Set_Currency" in dictionary 5261,

"Variable", l_value;

C H A P T E R 9 H E L P E R F U N C T I O N S

588 G P P O W E R T O O L S

MBS_Memory_Set_Date

This call is used to store a date value in a memory variable slot which can
then be read by another script. It is designed to be used with the
MBS_Runtime_Execute and MBS_Memory_Get_Date Helper Functions as
a method of storing data for longer than the current script’s scope or
passing parameters. You can store up to 100 different variables of each
datatype.

The parameter list for this call is:

in string IN_Parameter;

in date IN_Value;

An example script is:

local date l_value;

l_value = mkdate(1, 1, 1980);

call with name "MBS_Memory_Set_Date" in dictionary 5261, "Variable",

l_value;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 589

MBS_Memory_Set_Long

This call is used to store an integer or long value in a memory variable slot
which can then be read by another script. It is designed to be used with the
MBS_Runtime_Execute and MBS_Memory_Get_Long Helper Functions as
a method of storing data for longer than the current script’s scope or
passing parameters. You can store up to 100 different variables of each
datatype.

The parameter list for this call is:

in string IN_Parameter;

in long IN_Value;

An example script is:

local long l_value;

l_value = 0;

call with name "MBS_Memory_Set_Long" in dictionary 5261, "Variable",

l_value;

C H A P T E R 9 H E L P E R F U N C T I O N S

590 G P P O W E R T O O L S

MBS_Memory_Set_String

This call is used to store a string value in a memory variable slot which can
then be read by another script. It is designed to be used with the
MBS_Runtime_Execute and MBS_Memory_Get_String Helper Functions
as a method of storing data for longer than the current script’s scope or
passing parameters. You can store up to 100 different variables of each
datatype.

String data can be up to 132 characters per variable.

The parameter list for this call is:

in string IN_Parameter;

in string IN_Value;

An example script is:

local string l_value;

l_value = "Value";

call with name "MBS_Memory_Set_String" in dictionary 5261,

"Variable", l_value;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 591

MBS_Memory_Set_Time

This call is used to store a time value in a memory variable slot which can
then be read by another script. It is designed to be used with the
MBS_Runtime_Execute and MBS_Memory_Get_Time Helper Functions as
a method of storing data for longer than the current script’s scope or
passing parameters. You can store up to 100 different variables of each
datatype.

The parameter list for this call is:

in string IN_Parameter;

in time IN_Value;

An example script is:

local time l_value;

l_value = mktime(0, 0, 0);

call with name "MBS_Memory_Set_Time" in dictionary 5261, "Variable",

l_value;

C H A P T E R 9 H E L P E R F U N C T I O N S

592 G P P O W E R T O O L S

MBS_Memory_Set_Reference

This call is used to store a table reference in a memory variable slot which
can then be read by another script. It is designed to be used with the
MBS_Runtime_Execute and MBS_Memory_Get_Reference Helper
Functions as a method of storing data for longer than the current script’s
scope or passing parameters. You can store up to 100 different variables of
each datatype.

The parameter list for this call is:

in string IN_Name;

in reference IN_Reference;

An example script is:

local reference l_reference;

assign l_reference as reference to table XXXX;

call with name "MBS_Memory_Set_Reference" in dictionary 5261,

"Variable", l_reference;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 593

MBS_Memory_Set_Table

This call is used to store a table reference in a memory variable slot which
can then be read by another script. It is designed to be used with the
MBS_Runtime_Execute and MBS_Memory_Get_Reference Helper
Functions as a method of storing data for longer than the current script’s
scope or passing parameters. You can store up to 100 different variables of
each datatype.

The parameter list for this call is:

in string IN_Name;

inout anonymous table INOUT_Table;

An example script is:

local anonymous table l_table;

open table l_table with name "RM_Customer_MSTR";

call with name "MBS_Memory_Set_Table" in dictionary 5261,

"Variable", l_table;

C H A P T E R 9 H E L P E R F U N C T I O N S

594 G P P O W E R T O O L S

MBS_Memory_Set_Field

This call is used to store a field reference in a memory variable slot which
can then be read by another script. It is designed to be used with the
MBS_Runtime_Execute and MBS_Memory_Get_Reference Helper
Functions as a method of storing data for longer than the current script’s
scope or passing parameters. You can store up to 100 different variables of
each datatype.

The parameter list for this call is:

in string IN_Name;

inout anonymous field INOUT_Field;

An example script is:

call with name "MBS_Memory_Set_Field" in dictionary 5261,

"Variable", 'Customer Number' of window RM_Customer_Maintenance of

form RM_Customer_Maintenance;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 595

MBS_Memory_Get

This call is used to read a previously stored value from a memory variable
slot. It is designed to be used with the MBS_Runtime_Execute and
MBS_Memory_Set Helper Functions as a method of storing data for longer
than the current script’s scope or passing parameters. You can store up to
100 different variables of each datatype.

String data can be up to 132 characters per variable.

The parameter list for this call is:

in string IN_Parameter;

out anonymous field OUT_Value;

An example script is:

local string l_value;

call with name "MBS_Memory_Get" in dictionary 5261, "Variable",

l_value;

C H A P T E R 9 H E L P E R F U N C T I O N S

596 G P P O W E R T O O L S

MBS_Memory_Get_Boolean

This call is used to read a previously stored boolean value from a memory
variable slot. It is designed to be used with the MBS_Runtime_Execute and
MBS_Memory_Set_Boolean Helper Functions as a method of storing data
for longer than the current script’s scope or passing parameters. You can
store up to 100 different variables of each datatype.

The parameter list for this call is:

in string IN_Parameter;

out boolean OUT_Value;

An example script is:

local boolean l_value;

call with name "MBS_Memory_Get" in dictionary 5261, "Variable",

l_value;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 597

MBS_Memory_Get_Currency

This call is used to read a previously stored currency value from a
memory variable slot. It is designed to be used with the
MBS_Runtime_Execute and MBS_Memory_Set_Currency Helper
Functions as a method of storing data for longer than the current script’s
scope or passing parameters. You can store up to 100 different variables of
each datatype.

The parameter list for this call is:

in string IN_Parameter;

out currency OUT_Value;

An example script is:

local currency l_value;

call with name "MBS_Memory_Get_Currency" in dictionary 5261,

"Variable", l_value;

C H A P T E R 9 H E L P E R F U N C T I O N S

598 G P P O W E R T O O L S

MBS_Memory_Get_Date

This call is used to read a previously stored date value from a memory
variable slot. It is designed to be used with the MBS_Runtime_Execute and
MBS_Memory_Set_Date Helper Functions as a method of storing data for
longer than the current script’s scope or passing parameters. You can store
up to 100 different variables of each datatype.

The parameter list for this call is:

in string IN_Parameter;

out date OUT_Value;

An example script is:

local date l_value;

call with name "MBS_Memory_Get_Date" in dictionary 5261, "Variable",

l_value;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 599

MBS_Memory_Get_Long

This call is used to read a previously stored integer or long value from a
memory variable slot. It is designed to be used with the
MBS_Runtime_Execute and MBS_Memory_Set_Long Helper Functions as
a method of storing data for longer than the current script’s scope or
passing parameters. You can store up to 100 different variables of each
datatype.

The parameter list for this call is:

in string IN_Parameter;

out long OUT_Value;

An example script is:

local long l_value;

call with name "MBS_Memory_Get_Long" in dictionary 5261, "Variable",

l_value;

C H A P T E R 9 H E L P E R F U N C T I O N S

600 G P P O W E R T O O L S

MBS_Memory_Get_String

This call is used to read a previously stored string value from a memory
variable slot. It is designed to be used with the MBS_Runtime_Execute and
MBS_Memory_Set_String Helper Functions as a method of storing data
for longer than the current script’s scope or passing parameters. You can
store up to 100 different variables of each datatype.

String data can be up to 132 characters per variable.

The parameter list for this call is:

in string IN_Parameter;

out string OUT_Value;

An example script is:

local string l_value;

call with name "MBS_Memory_Get_String" in dictionary 5261,

"Variable", l_value;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 601

MBS_Memory_Get_Time

This call is used to read a previously stored time value from a memory
variable slot. It is designed to be used with the MBS_Runtime_Execute and
MBS_Memory_Set_Time Helper Functions as a method of storing data for
longer than the current script’s scope or passing parameters. You can store
up to 100 different variables of each datatype.

The parameter list for this call is:

in string IN_Parameter;

out time OUT_Value;

An example script is:

local time l_value;

call with name "MBS_Memory_Get_Time" in dictionary 5261, "Variable",

l_value;

C H A P T E R 9 H E L P E R F U N C T I O N S

602 G P P O W E R T O O L S

MBS_Memory_Get_Reference

This call is used to read a previously stored table or field reference from a
memory variable slot. It is designed to be used with the
MBS_Runtime_Execute and MBS_Memory_Set_Reference or
MBS_Memory_Set_Table Helper Functions as a method of storing data for
longer than the current script’s scope or passing parameters. You can store
up to 100 different variables of each datatype.

The parameter list for this call is:

in string IN_Name;

out reference OUT_Reference;

An example script is:

local reference l_reference;

local string l_customer;

call with name "MBS_Memory_Get_Reference" in dictionary 5261,

"Variable", l_reference;

l_customer = column("Customer Number") of table(l_reference);

or

local reference l_reference;

local string l_customer;

call with name "MBS_Memory_Get_Reference" in dictionary 5261,

"Variable", l_reference;

l_customer = field(l_reference);

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 603

MBS_Memory_Del

This call is used to remove a previously stored value from a memory
variable slot. It is designed to be used with the MBS_Runtime_Execute and
MBS_Memory_Set Helper Functions as a method of storing data for longer
than the current script’s scope or passing parameters. You can store up to
100 different variables of each datatype.

The value parameter for this helper function is only needed to identify the
datatype.

The parameter list for this call is:

in string IN_Name;

in anonymous field IN_Value;

An example script is:

local string l_value;

call with name "MBS_Memory_Del" in dictionary 5261, "Variable",

l_value;

C H A P T E R 9 H E L P E R F U N C T I O N S

604 G P P O W E R T O O L S

MBS_Memory_Del_Boolean

This call is used to remove a previously stored boolean value from a
memory variable slot. It is designed to be used with the
MBS_Runtime_Execute and MBS_Memory_Set_Boolean Helper Functions
as a method of storing data for longer than the current script’s scope or
passing parameters. You can store up to 100 different variables of each
datatype.

The parameter list for this call is:

in string IN_Name;

An example script is:

call with name "MBS_Memory_Del_Boolean" in dictionary 5261,

"Variable";

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 605

MBS_Memory_Del_Currency

This call is used to remove a previously stored currency value from a
memory variable slot. It is designed to be used with the
MBS_Runtime_Execute and MBS_Memory_Set_Currency Helper
Functions as a method of storing data for longer than the current script’s
scope or passing parameters. You can store up to 100 different variables of
each datatype.

The parameter list for this call is:

in string IN_Name;

An example script is:

call with name "MBS_Memory_Del_Currency" in dictionary 5261,

"Variable";

C H A P T E R 9 H E L P E R F U N C T I O N S

606 G P P O W E R T O O L S

MBS_Memory_Del_Date

This call is used to remove a previously stored date value from a memory
variable slot. It is designed to be used with the MBS_Runtime_Execute and
MBS_Memory_Set_Date Helper Functions as a method of storing data for
longer than the current script’s scope or passing parameters. You can store
up to 100 different variables of each datatype.

The parameter list for this call is:

in string IN_Name;

An example script is:

call with name "MBS_Memory_Del_Date" in dictionary 5261, "Variable";

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 607

MBS_Memory_Del_Long

This call is used to remove a previously stored integer or long value from
a memory variable slot. It is designed to be used with the
MBS_Runtime_Execute and MBS_Memory_Set_Long Helper Functions as
a method of storing data for longer than the current script’s scope or
passing parameters. You can store up to 100 different variables of each
datatype.

The parameter list for this call is:

in string IN_Name;

An example script is:

call with name "MBS_Memory_Del_Long" in dictionary 5261, "Variable";

C H A P T E R 9 H E L P E R F U N C T I O N S

608 G P P O W E R T O O L S

MBS_Memory_Del_String

This call is used to remove a previously stored string value from a
memory variable slot. It is designed to be used with the
MBS_Runtime_Execute and MBS_Memory_Set_String Helper Functions as
a method of storing data for longer than the current script’s scope or
passing parameters. You can store up to 100 different variables of each
datatype.

The parameter list for this call is:

in string IN_Name;

An example script is:

call with name "MBS_Memory_Del_String" in dictionary 5261,

"Variable";

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 609

MBS_Memory_Del_Time

This call is used to remove a previously stored time value from a memory
variable slot. It is designed to be used with the MBS_Runtime_Execute and
MBS_Memory_Set_Time Helper Functions as a method of storing data for
longer than the current script’s scope or passing parameters. You can store
up to 100 different variables of each datatype.

The parameter list for this call is:

in string IN_Name;

An example script is:

call with name "MBS_Memory_Del_Time" in dictionary 5261, "Variable";

C H A P T E R 9 H E L P E R F U N C T I O N S

610 G P P O W E R T O O L S

MBS_Memory_Del_Reference

This call is used to remove a previously stored table or field reference from
a memory variable slot. It is designed to be used with the
MBS_Runtime_Execute and MBS_Memory_Set_Reference,
MBS_Memory_Set_Table or MBS_Memory_Set_Field Helper Functions as
a method of storing data for longer than the current script’s scope or
passing parameters. You can store up to 100 different variables of each
datatype.

The parameter list for this call is:

in string IN_Name;

An example script is:

call with name "MBS_Memory_Del_Reference" in dictionary 5261,

"Variable";

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 611

MBS_Get_Constant

This call is used read the value of a constant stored in a dictionary at the
global or form level.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Constant_Name;

out anonymous field OUT_Constant_Value;

An example script is:

local integer l_constant;

call with name "MBS_Get_Constant" in dictionary 5261, 0, "",

"RM_DOC_SALES", l_constant;

call with name "MBS_Get_Constant" in dictionary 5261, 0,

"GL_Batch_Entry", "ORIGIN_GENERAL_ENTRY", l_constant;

C H A P T E R 9 H E L P E R F U N C T I O N S

612 G P P O W E R T O O L S

MBS_Get_Constant_Currency

This call is used read the value of a currency constant stored in a
dictionary at the global or form level.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Constant_Name;

out currency OUT_Constant_Value;

An example script is:

local currency l_constant;

call with name "MBS_Get_Constant_Currency" in dictionary 5261, 0,

"", " MAX_QTY_5", l_constant;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 613

MBS_Get_Constant_Integer

This call is used read the value of an integer or long constant stored in a
dictionary at the global or form level.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Constant_Name;

out long OUT_Constant_Value;

An example script is:

local long l_constant;

call with name "MBS_Get_Constant_Integer" in dictionary 5261, 0, "",

"EFT_SWITZERLAND", l_constant;

C H A P T E R 9 H E L P E R F U N C T I O N S

614 G P P O W E R T O O L S

MBS_Get_Constant_String

This call is used read the value of a string constant stored in a dictionary at
the global or form level.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Constant_Name;

out string OUT_Constant_Value;

An example script is:

local string l_constant;

call with name "MBS_Get_Constant_String" in dictionary 5261, 0, "",

"SQL_DEFAULT_OWNER", l_constant;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 615

MBS_Set_Global

This call is used write the value of a global variable stored in a dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Global_Name;

in anonymous field IN_Global_Value;

An example script is:

local string l_global;

l_global = "TWO";

call with name "MBS_Set_Global" in dictionary 5261, 0, "Intercompany

ID", l_global;

C H A P T E R 9 H E L P E R F U N C T I O N S

616 G P P O W E R T O O L S

MBS_Set_Global_Boolean

This call is used write the value of a boolean global variable stored in a
dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Global_Name;

in boolean IN_Global_Value;

An example script is:

local boolean l_global;

l_global = true;

call with name "MBS_Set_Global_Boolean" in dictionary 5261, 0, "Show

Status", l_global;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 617

MBS_Set_Global_Date

This call is used write the value of a date global variable stored in a
dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Global_Name;

in date IN_Global_Value;

An example script is:

local date l_global;

l_global = sysdate();

call with name "MBS_Set_Global_Date" in dictionary 5261, 0, "User

Date", l_global;

C H A P T E R 9 H E L P E R F U N C T I O N S

618 G P P O W E R T O O L S

MBS_Set_Global_Numeric

This call is used write the value of a numeric global variable stored in a
dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Global_Name;

in vcurrency IN_Global_Value;

An example script is:

local vcurrency l_global;

l_global = 1;

call with name "MBS_Set_Global_Numeric" in dictionary 5261, 0,

"Company ID", l_global;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 619

MBS_Set_Global_String

This call is used write the value of a string global variable stored in a
dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Global_Name;

in string IN_Global_Value;

An example script is:

local string l_global;

l_global = "sa";

call with name "MBS_Set_Global_String" in dictionary 5261, 0, "User

ID", l_global;

C H A P T E R 9 H E L P E R F U N C T I O N S

620 G P P O W E R T O O L S

MBS_Set_Global_Text

This call is used write the value of a text global variable stored in a
dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Global_Name;

in text IN_Global_Value;

An example script is:

local text l_global;

l_global = "";

call with name "MBS_Set_Global_Text" in dictionary 5261, 0, "Big

Text", l_global;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 621

MBS_Set_Global_Time

This call is used write the value of a time global variable stored in a
dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Global_Name;

in time IN_Global_Value;

An example script is:

local time l_global;

l_global = systime();

call with name "MBS_Set_Global_Time" in dictionary 5261, 0, "User

Time", l_global;

C H A P T E R 9 H E L P E R F U N C T I O N S

622 G P P O W E R T O O L S

MBS_Get_Global

This call is used read the value of a global variable stored in a dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Global_Name;

out anonymous field OUT_Global_Value;

An example script is:

local string l_global;

call with name "MBS_Get_Global" in dictionary 5261, 0, "Intercompany

ID", l_global;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 623

MBS_Get_Global_Boolean

This call is used read the value of a boolean global variable stored in a
dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Global_Name;

out boolean OUT_Global_Value;

An example script is:

local boolean l_global;

call with name "MBS_Get_Global_Boolean" in dictionary 5261, 0, "Show

Status", l_global;

C H A P T E R 9 H E L P E R F U N C T I O N S

624 G P P O W E R T O O L S

MBS_Get_Global_Date

This call is used read the value of a date global variable stored in a
dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Global_Name;

out date OUT_Global_Value;

An example script is:

local date l_global;

call with name "MBS_Get_Global_Date" in dictionary 5261, 0, "User

Date", l_global;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 625

MBS_Get_Global_Numeric

This call is used read the value of a numeric global variable stored in a
dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Global_Name;

out vcurrency OUT_Global_Value;

An example script is:

local vcurrency l_global;

call with name "MBS_Get_Global_Numeric" in dictionary 5261, 0,

"Company ID", l_global;

C H A P T E R 9 H E L P E R F U N C T I O N S

626 G P P O W E R T O O L S

MBS_Get_Global_String

This call is used read the value of a string global variable stored in a
dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Global_Name;

out string OUT_Global_Value;

An example script is:

local string l_global;

call with name "MBS_Get_Global_String" in dictionary 5261, 0, "User

ID", l_global;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 627

MBS_Get_Global_Text

This call is used read the value of a text global variable stored in a
dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Global_Name;

out text OUT_Global_Value;

An example script is:

local text l_global;

call with name "MBS_Get_Global_Text" in dictionary 5261, 0, "Big

Text", l_global;

C H A P T E R 9 H E L P E R F U N C T I O N S

628 G P P O W E R T O O L S

MBS_Get_Global_Time

This call is used read the value of a time global variable stored in a
dictionary.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Global_Name;

out time OUT_Global_Value;

An example script is:

local time l_global;

call with name "MBS_Get_Global_Time" in dictionary 5261, 0, "User

Time", l_global;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 629

MBS_Auto_Log

This call is used to add a message into the GP Power Tools log file. It is
designed to be used with the Automatic Trigger Mode to record additional
information when a trigger fires.

Using this Helper Function within a Trigger Script will write to the GP Power
Tools log file and also be recorded in the email body if the trigger is set to send an
email.

The parameter list for this call is:

in string IN_Message;

An example script is:

call with name "MBS_Auto_Log" in dictionary 5261, "Message";

C H A P T E R 9 H E L P E R F U N C T I O N S

630 G P P O W E R T O O L S

MBS_Logging_Start

This call is used to programmatically start Manual Logging Mode and is
designed to be used with Non-logging triggers.in the Automatic Trigger
Mode.

There are no parameters for this call.

An example script is:

call with name "MBS_Logging_Start" in dictionary 5261;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 631

MBS_Logging_Stop

This call is used to programmatically stop Manual Logging Mode and is
designed to be used with Non-logging triggers.in the Automatic Trigger
Mode.

There are no parameters for this call.

An example script is:

call with name "MBS_Logging_Stop" in dictionary 5261;

C H A P T E R 9 H E L P E R F U N C T I O N S

632 G P P O W E R T O O L S

MBS_Trigger_Start

This call is used to activate an Automatic Trigger Mode Trigger and is
designed to be used with Non-logging triggers.in the Automatic Trigger
Mode.

The parameter list for this call is:

in string IN_TriggerID;

An example script is:

call with name "MBS_Trigger_Start" in dictionary 5261, "XXXX";

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 633

MBS_Trigger_Stop

This call is used to deactivate an Automatic Trigger Mode Trigger and is
designed to be used with Non-logging triggers.in the Automatic Trigger
Mode.

The parameter list for this call is:

in string IN_TriggerID;

An example script is:

call with name "MBS_Trigger_Stop" in dictionary 5261, "XXXX";

C H A P T E R 9 H E L P E R F U N C T I O N S

634 G P P O W E R T O O L S

MBS_Trigger_Update_Dialog

This call is used to override the default dialog message and dialog type on
a trigger so it can be dynamically controlled from the script and is
designed to be used with.in the Automatic Trigger Mode.

The parameter list for this call is:

in string IN_Warning;

in integer IN_Mode; { 1 = info, 2 = warning, 3 = error, 4 = debug }

An example script is:

call with name "MBS_Trigger_Update_Dialog" in dictionary 5261,

"Message", 2 {warning};

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 635

MBS_Trigger_Update_Email

This call is used to override the default email address on a trigger so it can
be dynamically controlled from the script and is designed to be used
with.in the Automatic Trigger Mode.

The parameter list for this call is:

in string IN_Address;

An example script is:

call with name "MBS_Trigger_Update_Email" in dictionary 5261,

"user@domain.com";

C H A P T E R 9 H E L P E R F U N C T I O N S

636 G P P O W E R T O O L S

MBS_Trigger_Update_Email

This call is used to override the default email address on a trigger so it can
be dynamically controlled from the script and is designed to be used
with.in the Automatic Trigger Mode.

The parameter list for this call is:

in string IN_Address;

An example script is:

call with name "MBS_Trigger_Update_Email" in dictionary 5261,

"user@domain.com";

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 637

MBS_Arguments_Get_Count

This call is used to retrieve the number of Arguments (procedure or
function parameters) available when using Global Level with Parameters
or the Form Level with Parameters Trigger Events with Automatic Trigger
Mode.

See full example in the MBS_Arguments_Get_Value helper function
section.

The parameter list for this call is:

inout text INOUT_Args;

out integer OUT_Count;

An example script is:

inout text INOUT_Args;

local integer l_count;

call with name "MBS_Arguments_Get_Count" in dictionary 5261,

INOUT_Args, l_count;

C H A P T E R 9 H E L P E R F U N C T I O N S

638 G P P O W E R T O O L S

MBS_Arguments_Get_Type

This call is used to retrieve the datatype of a specified Argument
(procedure or function parameter) available when using Global Level with
Parameters or the Form Level with Parameters Trigger Events with
Automatic Trigger Mode.

Types returned can be: boolean, integer, long, currency, vcurrency, date,
time, datetime, string and text.

See full example in the MBS_Arguments_Get_Value helper function
section.

The parameter list for this call is:

inout text INOUT_Args;

in integer IN_Position;

out string OUT_Type;

An example script is:

inout text INOUT_Args;

local string l_type;

call with name "MBS_Arguments_Get_Type" in dictionary 5261,

INOUT_Args, 1, l_type;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 639

MBS_Arguments_Get_Value

This call is used to retrieve the value of a specified Argument (procedure
or function parameter) available when using Global Level with Parameters
or the Form Level with Parameters Trigger Events with Automatic Trigger
Mode.

Types can be: boolean, integer, long, currency, vcurrency, date, time,
datetime, string and text.

The parameter list for this call is:

inout text INOUT_Args;

in integer IN_Position;

out anonymous field OUT_Value;

An example script is:

inout text INOUT_Args;

local string l_value;

call with name "MBS_Arguments_Get_Value" in dictionary 5261,

INOUT_Args, 1, l_value;

A more complex example of iterating through arguments is shown in the
script below:

inout text INOUT_Args;

out boolean OUT_Condition;

local integer l_count;

local integer i;

local string l_type;

local string l_string;

local text l_text;

local boolean l_boolean;

local integer l_integer;

local long l_long;

local currency l_currency;

local vcurrency lvcurrency;

local date l_date;

local time l_time;

local datetime l_datetime;

OUT_Condition = false;

call with name "MBS_Arguments_Get_Count" in dictionary 5261, INOUT_Args, l_count;

if l_count > 0 then

 warning str(l_count);

 for i = 1 to l_count do

 call with name "MBS_Arguments_Get_Type" in dictionary 5261, INOUT_Args, i, l_type;

 case l_type

 in ["boolean"]

 call with name "MBS_Arguments_Get_Value" in dictionary 5261, INOUT_Args,

 i, l_boolean;

C H A P T E R 9 H E L P E R F U N C T I O N S

640 G P P O W E R T O O L S

 warning str(i)+": "+l_type+": " + str(l_boolean);

 in ["integer"]

 call with name "MBS_Arguments_Get_Value" in dictionary 5261, INOUT_Args,

 i, l_integer;

 warning str(i)+": "+l_type+": " + str(l_integer);

 in ["long"]

 call with name "MBS_Arguments_Get_Value" in dictionary 5261, INOUT_Args,

 i, l_long;

 warning str(i)+": "+l_type+": " + str(l_long);

 in ["currency"]

 call with name "MBS_Arguments_Get_Value" in dictionary 5261, INOUT_Args,

 i, l_currency;

 warning str(i)+": "+l_type+": " + str(l_currency);

 in ["vcurrency"]

 call with name "MBS_Arguments_Get_Value" in dictionary 5261, INOUT_Args,

 i, lvcurrency;

 warning str(i)+": "+l_type+": " + str(lvcurrency);

 in ["date"]

 call with name "MBS_Arguments_Get_Value" in dictionary 5261, INOUT_Args,

 i, l_date;

 warning str(i)+": "+l_type+": " + str(l_date);

 in ["time"]

 call with name "MBS_Arguments_Get_Value" in dictionary 5261, INOUT_Args,

 i, l_time;

 warning str(i)+": "+l_type+": " + str(l_time);

 in ["datetime", "date or time"]

 call with name "MBS_Arguments_Get_Value" in dictionary 5261, INOUT_Args,

 i, l_datetime;

 warning str(i)+": "+l_type+": " + str(l_datetime);

 in ["string"]

 call with name "MBS_Arguments_Get_Value" in dictionary 5261, INOUT_Args,

 i, l_string;

 warning str(i)+": "+l_type+": " + l_string;

 in ["text"]

 call with name "MBS_Arguments_Get_Value" in dictionary 5261, INOUT_Args,

 i, l_text;

 warning str(i)+": "+l_type+": " + l_text;

 else

 end case;

 end for;

end if;

OUT_Condition = true;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 641

MBS_Arguments_Set_Value

This call is used to update the value of a specified Argument (procedure or
function parameter) available when using Global Level with Parameters or
the Form Level with Parameters Trigger Events with Automatic Trigger
Mode.

Types can be: boolean, integer, long, currency, vcurrency, date, time,
datetime, string and text.

The parameter list for this call is:

inout text INOUT_Args;

in integer IN_Position;

in anonymous field IN_Value;

An example script is:

inout text INOUT_Args;

local string l_value;

l_value = "string";

call with name "MBS_Arguments_Set_Value" in dictionary 5261,

INOUT_Args, 1, l_value;

C H A P T E R 9 H E L P E R F U N C T I O N S

642 G P P O W E R T O O L S

MBS_DUOS_Set

This call is used to store a value in the DUOS SY_User_Object_Store
(SY90000) . It is designed to be used with the MBS_DUOS_Get Helper
Function.

The parameter list for this call is:

in string IN_Object;

in string IN_ID;

in string IN_Property;

in string IN_Value;

An example script is:

local string l_string;

local string l_object;

l_object = "ID";

l_string = "Value";

call with name "MBS_DUOS_Set" in dictionary 5261, "Object",

l_object, "Property", l_string;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 643

MBS_DUOS_Get

This call is used to read a previously set value from the DUOS
SY_User_Object_Store (SY90000) table. It is designed to be used with the
MBS_DUOS_Set Helper Function.

The parameter list for this call is:

in string IN_Object;

in string IN_ID;

in string IN_Property;

out string OUT_Value;

An example script is:

local string l_string;

local string l_object;

l_object = "ID";

call with name "MBS_DUOS_Get" in dictionary 5261, "Object",

l_object, "Property", l_string;

C H A P T E R 9 H E L P E R F U N C T I O N S

644 G P P O W E R T O O L S

MBS_DUOS_Del

This call is used to remove a previously set value from the DUOS
SY_User_Object_Store (SY90000) table. It is designed to be used with the
MBS_DUOS_Set Helper Function.

The parameter list for this call is:

in string IN_Object;

in string IN_ID;

in string IN_Property;

An example script is:

local string l_object;

l_object = "ID";

call with name "MBS_DUOS_Del" in dictionary 5261, "Object",

l_object, "Property";

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 645

MBS_DUOS_DelAll

This call is used to remove all previously stored values for an object from
the DUOS SY_User_Object_Store (SY90000) table. It is designed to be used
with the MBS_DUOS_Set Helper Function.

The parameter list for this call is:

in string IN_Object;

in string IN_ID;

An example script is:

l_object = "ID";

call with name "MBS_DUOS_DelAll" in dictionary 5261, "Object",

l_object;

C H A P T E R 9 H E L P E R F U N C T I O N S

646 G P P O W E R T O O L S

MBS_UserAddInfo_Get

This call is used to retrieve data stored in the User Setup Additional
Information window.

The parameter list for this call is:

in 'User ID' IN_UserID; {User ID}

in integer IN_Position; {which field to return: Field 1 to 20}

out string OUT_String; {Returned Data}

An example script is:

local string l_user;

local string l_string;

l_user = 'User ID' of globals;

call with name " MBS_UserAddInfo_Get" in dictionary 5261, l_user, 1

{field to get}, l_string;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 647

MBS_UserAddInfo_Set

This call is used to update data stored in the User Setup Additional
Information window.

The parameter list for this call is:

in 'User ID' IN_UserID; {User ID}

in integer IN_Position; {which field to return: Field 1 to 20}

in string IN_String; {Data to update}

An example script is:

local string l_user;

local string l_string;

l_user = 'User ID' of globals;

l_string = "email@domain.com";

call with name " MBS_UserAddInfo_Set" in dictionary 5261, l_user, 1

{field to set}, l_string;

C H A P T E R 9 H E L P E R F U N C T I O N S

648 G P P O W E R T O O L S

MBS_UserAddInfo_GetPrompt

This call is used to retrieve prompts used for the User defined fields in the
User Setup Additional Information window.

The parameter list for this call is:

in integer IN_Position; {which field to return: Field 1 to 6}

out string OUT_String; {Returned Prompt}

An example script is:

local string l_prompt;

call with name " MBS_UserAddInfo_GetPrompt" in dictionary 5261, 1

{prompt to get}, l_prompt;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 649

MBS_SQL_Lookup

This call is used to open a lookup and return the selected value to a field. It
uses the Custom SQL Lookup from Parameter Lists. You need to provide
a SQL Execute Setup script which returns a query with three string
columns; an ID string, a Description string and a string to be returned
(usually the same as the ID value). The other parameters are the seed
value and return field (usually the same window field).

Return does not work across dictionaries, use the MBS_SQL_Lookup2
helper function to set field and run script field instead.

The parameter list for this call is:

in string IN_Script_ID;

in string IN_Seed_Value;

inout anonymous INOUT_Return_Field;

An example script is:

local string l_string;

call with name "MBS_SQL_Lookup" in dictionary 5261, "XXXX",

l_string, Return_Field;

C H A P T E R 9 H E L P E R F U N C T I O N S

650 G P P O W E R T O O L S

MBS_SQL_Lookup2

This call is used to open a lookup and return the selected value to a field. It
uses the Custom SQL Lookup from Parameter Lists. You need to provide
a SQL Execute Setup script which returns a query with three string
columns; an ID string, a Description string and a string to be returned
(usually the same as the ID value). The other parameters are the seed
value and return field (usually the same window field).

This helper function uses set field and run script field and can be used
when the MBS_SQL_Lookup helper function does not work.

The parameter list for this call is:

in string IN_Script_ID;

in string IN_Seed_Value;

inout anonymous INOUT_Return_Field;

An example script is:

local string l_string;

call with name "MBS_SQL_Lookup2" in dictionary 5261, "XXXX",

l_string, Return_Field;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 651

MBS_SQL_Lookup_Parameter

This call is used to open a lookup and return the selected value to a field. It
uses the Custom SQL Lookup from Parameter Lists. You need to provide
a Parameter List Parameter ID and the Position for parameter that is set up
for a Custom Lookup (SQL) mode. The other parameters are the seed
value and return field (usually the same window field).

Return does not work across dictionaries, use the
MBS_SQL_Lookup_Parameter2 helper function to set field and run script
field instead.

The parameter list for this call is:

in string IN_Parameter_ID;

in integer IN_Position;

in string IN_Seed_Value;

inout anonymous INOUT_Return_Field;

An example script is:

local string l_string;

call with name "MBS_SQL_Lookup_Parameter" in dictionary 5261,

"XXXX", Y, l_string, Return_Field;

C H A P T E R 9 H E L P E R F U N C T I O N S

652 G P P O W E R T O O L S

MBS_SQL_Lookup_Parameter2

This call is used to open a lookup and return the selected value to a field. It
uses the Custom SQL Lookup from Parameter Lists. You need to provide
a Parameter List Parameter ID and the Position for parameter that is set up
for a Custom Lookup (SQL) mode. The other parameters are the seed
value and return field (usually the same window field).

This helper function uses set field and run script field and can be used
when the MBS_SQL_Lookup_Parameter helper function does not work.

The parameter list for this call is:

in string IN_Parameter_ID;

in integer IN_Position;

in string IN_Seed_Value;

inout anonymous INOUT_Return_Field;

An example script is:

local string l_string;

call with name "MBS_SQL_Lookup_Parameter2" in dictionary 5261,

"XXXX", Y, l_string, Return_Field;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 653

MBS_SQL_Lookup_Validate

This call is used to validate data against a Custom SQL Lookup used by
Parameter Lists. You need to provide a SQL Execute Setup script which
returns a query with three string columns; an ID string, a Description
string and a string to be returned (usually the same as the ID value). The
other parameters are the value and returned boolean result.

The parameter list for this call is:

in string IN_Script_ID;

in string IN_Value;

out boolean OUT_Validated;

An example script is:

local string l_string;

local boolean l_validated;

call with name "MBS_SQL_Lookup_Validate" in dictionary 5261, "XXXX",

l_string, l_validated;

C H A P T E R 9 H E L P E R F U N C T I O N S

654 G P P O W E R T O O L S

MBS_SQL_Lookup_Parameter_Validate

This call is used to validate data against a Custom SQL Lookup used by
Parameter Lists. You need to provide a Parameter List Parameter ID and
the Position for parameter that is set up for a Custom Lookup (SQL) mode.
The other parameters are the value and returned boolean result.

The parameter list for this call is:

in string IN_Parameter_ID;

in integer IN_Position;

in string IN_Value;

out boolean OUT_Validated;

An example script is:

local string l_string;

local boolean l_validated;

call with name "MBS_SQL_Lookup_Parameter_Validate" in dictionary

5261, "XXXX", Y, l_string, l_validated;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 655

MBS_Form_Lookup

This call is used to open a lookup and return the selected value to a field. It
uses the Custom Form Lookup from Parameter Lists. You need to define
the form, window and field information required to drive an existing
lookup form in any dictionary installed in Microsoft Dynamics GP. The
other parameters are the seed value and return field (usually the same
window field).

Return does not work across dictionaries, use the MBS_Form_Lookup2
helper function to set field and run script field instead.

The parameter list for this call is:

in integer IN_Dict;

in string IN_Form;

in string IN_Window;

in string IN_Field;

in string IN_FieldSortBy;

in string IN_WindowScroll;

in string IN_FieldScroll;

in string IN_Seed_Value;

inout anonymous INOUT_Return_Field;

An example script is:

local string l_string;

call with name "MBS_Form_Lookup" in dictionary 5261, Dict, Form,

Window, Field, FieldSortBy, WindowScroll, FieldScroll, l_string,

Return_Field;

C H A P T E R 9 H E L P E R F U N C T I O N S

656 G P P O W E R T O O L S

MBS_Form_Lookup2

This call is used to open a lookup and return the selected value to a field. It
uses the Custom Form Lookup from Parameter Lists. You need to define
the form, window and field information required to drive an existing
lookup form in any dictionary installed in Microsoft Dynamics GP. The
other parameters are the seed value and return field (usually the same
window field).

This helper function uses set field and run script field and can be used
when the MBS_Form_Lookup helper function does not work.

The parameter list for this call is:

in integer IN_Dict;

in string IN_Form;

in string IN_Window;

in string IN_Field;

in string IN_FieldSortBy;

in string IN_WindowScroll;

in string IN_FieldScroll;

in string IN_Seed_Value;

inout anonymous INOUT_Return_Field;

An example script is:

local string l_string;

call with name "MBS_Form_Lookup2" in dictionary 5261, Dict, Form,

Window, Field, FieldSortBy, WindowScroll, FieldScroll, l_string,

Return_Field;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 657

MBS_Form_Lookup_Parameter

This call is used to open a lookup and return the selected value to a field. It
uses the Custom Form Lookup from Parameter Lists. You need to provide
a Parameter List Parameter ID and the Position for parameter that is set up
for a Custom Lookup (Form) mode. The other parameters are the seed
value and return field (usually the same window field).

Return does not work across dictionaries, use the
MBS_Form_Lookup_Parameter2 helper function to set field and run script
field instead.

The parameter list for this call is:

in string IN_Parameter_ID;

in integer IN_Position;

in string IN_Seed_Value;

inout anonymous INOUT_Return_Field;

An example script is:

local string l_string;

call with name "MBS_Form_Lookup_Parameter" in dictionary 5261,

"XXXX", Y, l_string, Return_Field;

C H A P T E R 9 H E L P E R F U N C T I O N S

658 G P P O W E R T O O L S

MBS_Form_Lookup_Parameter2

This call is used to open a lookup and return the selected value to a field. It
uses the Custom Form Lookup from Parameter Lists. You need to provide
a Parameter List Parameter ID and the Position for parameter that is set up
for a Custom Lookup (Form) mode. The other parameters are the seed
value and return field (usually the same window field).

This helper function uses set field and run script field and can be used
when the MBS_Form_Lookup_Parameter helper function does not work.

The parameter list for this call is:

in string IN_Parameter_ID;

in integer IN_Position;

in string IN_Seed_Value;

inout anonymous INOUT_Return_Field;

An example script is:

local string l_string;

call with name "MBS_Form_Lookup_Parameter2" in dictionary 5261,

"XXXX", Y, l_string, Return_Field;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 659

MBS_Project_Start

This call is used to activate all Automatic Trigger Mode Triggers belonging
to the specified Project ID. It is designed to be used with Non-logging
triggers.in the Automatic Trigger Mode.

The parameter list for this call is:

in string IN_ProjectID;

An example script is:

call with name "MBS_Project_Start" in dictionary 5261, "XXXX";

C H A P T E R 9 H E L P E R F U N C T I O N S

660 G P P O W E R T O O L S

MBS_Project_Stop

This call is used to deactivate all Automatic Trigger Mode Triggers
belonging to the specified Project ID. It is designed to be used with Non-
logging triggers.in the Automatic Trigger Mode.

The parameter list for this call is:

in string IN_ProjectID;

An example script is:

call with name "MBS_Project_Stop" in dictionary 5261, "XXXX";

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 661

MBS_Script_Substitute

Use this call to replace all instances of a placeholder in a script with a
value in script. It can be used to manually perform Parameter List
substitution. Use this function with the MBS_Parameter_String function
and MBS_Parameter_String, MBS_Parameter_Number,
MBS_Parameter_Currency, MBS_Parameter_Boolean,
MBS_Parameter_Date and MBS_Parameter_Time functions.

The parameter list for this call is:

inout text INOUT_Text;

in string IN_Placeholder;

in string IN_Value;

An example script is:

local text MBS_Text_Field;

local string MBS_Placeholder;

local string MBS_Value;

call with name "MBS_Script_Substitute" in dictionary 5261,

 MBS_Text_Field, MBS_Placeholder, MBS_Value;

C H A P T E R 9 H E L P E R F U N C T I O N S

662 G P P O W E R T O O L S

MBS_Parameter_Placeholder

Use this call to obtain the Parameter List placeholder to use with the
MBS_Script_Substitute function.

The parameter list for this call is:

in integer IN_Type; { 1 = String, 2 = Integer, 3 = Currency, 4 =

Boolean, 5 = Date, 6 = Time }

in integer IN_Position;

in integer IN_From; { 0 = From, 1 = To }

in integer IN_Language; { 1 = Dex, 2 = SQL, 3 = C#, 4 = VB }

out string OUT_String;

An example script is:

local string MBS_Placeholder;

call with name "MBS_Parameter_Placeholder" in dictionary 5261,

 1 {Type: String}, 1 {Position}, 0 {FromTo: From/Single}, 1

{Language: Dexterity sanScript}, MBS_Placeholder;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 663

MBS_Parameter_String

Use this call to obtain the string representation of a string value to use
with the MBS_Script_Substitute function.

The parameter list for this call is:

in string IN_Value;

in integer IN_Language; { 1 = Dex, 2 = SQL, 3 = C#, 4 = VB }

out string OUT_String;

An example script is:

local string MBS_Value;

local string MBS_Value_String;

MBS_Value_String = <Variable>;

call with name "MBS_Parameter_String" in dictionary 5261,

 MBS_Value_String, 1 {Language: Dexterity sanScript}, MBS_Value;

C H A P T E R 9 H E L P E R F U N C T I O N S

664 G P P O W E R T O O L S

MBS_Parameter_Number

Use this call to obtain the string representation of a number value to use
with the MBS_Script_Substitute function.

The parameter list for this call is:

in long IN_Value;

in integer IN_Language; { 1 = Dex, 2 = SQL, 3 = C#, 4 = VB }

out string OUT_String;

An example script is:

local string MBS_Value;

local long MBS_Value_Number;

MBS_Value_Number = <Variable>;

call with name "MBS_Parameter_Number" in dictionary 5261,

 MBS_Value_Number, 1 {Language: Dexterity sanScript}, MBS_Value;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 665

MBS_Parameter_Currency

Use this call to obtain the string representation of a currency value to use
with the MBS_Script_Substitute function.

The parameter list for this call is:

in currency IN_Value;

in integer IN_Language; { 1 = Dex, 2 = SQL, 3 = C#, 4 = VB }

out string OUT_String;

An example script is:

local string MBS_Value;

local currency MBS_Value_Currency;

MBS_Value_Currency = <Variable>;

call with name "MBS_Parameter_Currency" in dictionary 5261,

 MBS_Value_Currency, 1 {Language: Dexterity sanScript},

MBS_Value;

C H A P T E R 9 H E L P E R F U N C T I O N S

666 G P P O W E R T O O L S

MBS_Parameter_Boolean

Use this call to obtain the string representation of a boolean value to use
with the MBS_Script_Substitute function.

The parameter list for this call is:

in boolean IN_Value;

in integer IN_Language; { 1 = Dex, 2 = SQL, 3 = C#, 4 = VB }

out string OUT_String;

An example script is:

local string MBS_Value;

local boolean MBS_Value_Boolean;

MBS_Value_Boolean = <Variable>;

call with name "MBS_Parameter_Boolean" in dictionary 5261,

 MBS_Value_Boolean, 1 {Language: Dexterity sanScript}, MBS_Value;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 667

MBS_Parameter_Date

Use this call to obtain the string representation of a date value to use with
the MBS_Script_Substitute function.

The parameter list for this call is:

in date IN_Value;

in integer IN_Language; { 1 = Dex, 2 = SQL, 3 = C#, 4 = VB }

out string OUT_String;

An example script is:

local string MBS_Value;

local date MBS_Value_Date;

MBS_Value_Date = <Variable>;

call with name "MBS_Parameter_Date" in dictionary 5261,

 MBS_Value_Date, 1 {Language: Dexterity sanScript}, MBS_Value;

C H A P T E R 9 H E L P E R F U N C T I O N S

668 G P P O W E R T O O L S

MBS_Parameter_Time

Use this call to obtain the string representation of a time value to use with
the MBS_Script_Substitute function.

The parameter list for this call is:

in time IN_Value;

in integer IN_Language; { 1 = Dex, 2 = SQL, 3 = C#, 4 = VB }

out string OUT_String;

An example script is:

local string MBS_Value;

local time MBS_Value_Time;

MBS_Value_Time = <Variable>;

call with name "MBS_Parameter_Time" in dictionary 5261,

 MBS_Value_Time, 1 {Language: Dexterity sanScript}, MBS_Value;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 669

MBS_Parameter_Load

Use this call to a Parameter List Parameter ID with its default values. Use
this command before using the MBS_Parameter_Set_String,
MBS_Parameter_Set_Number, MBS_Parameter_Set_Currency,
MBS_Parameter_Set_Boolean, MBS_Parameter_Set_Date,
MBS_Parameter_Set_Time,. MBS_Parameter_Get_String,
MBS_Parameter_Get_Number, MBS_Parameter_Get_Currency,
MBS_Parameter_Get_Boolean, MBS_Parameter_Get_Date, and
MBS_Parameter_Get_Time functions

The parameter list for this call is:

in string IN_ParameterID;

out integer OUT_Status;

An example script is:

local integer MBS_Status;

call with name "MBS_Parameter_Load" in dictionary 5261, "XXXX",

MBS_Status;

C H A P T E R 9 H E L P E R F U N C T I O N S

670 G P P O W E R T O O L S

MBS_Parameter_Open

Use this call to open the Parameter List window to a previously loaded
Parameter List and specify the Runtime Execute Script ID to be executed
when the Parameter List window’s OK Button is clicked.

The parameter list for this call is:

in string IN_ScriptID;

out integer OUT_Status;

An example script is:

local integer MBS_Status;

call with name "MBS_Parameter_Open" in dictionary 5261, "XXXX",

MBS_Status;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 671

MBS_Parameter_Set_String

Use this call to set the value of a string parameter into the parameter list
memory. The MBS_Parameter_Load must be executed before using this
function to initialize the parameter list in memory.

The parameter list for this call is:

in integer IN_Position;

in integer IN_From; { 0 = From, 1 = To }

in string IN_Value;

An example script is:

local string MBS_Value_String;

MBS_Value_String = <Variable>;

call with name "MBS_Parameter_Set_String" in dictionary 5261,

 1 {Position: "XXXX"}, 0 {FromTo: From/Single}, MBS_Value_String;

C H A P T E R 9 H E L P E R F U N C T I O N S

672 G P P O W E R T O O L S

MBS_Parameter_Set_Number

Use this call to set the value of a number parameter into the parameter list
memory. The MBS_Parameter_Load must be executed before using this
function to initialize the parameter list in memory.

The parameter list for this call is:

in integer IN_Position;

in integer IN_From; { 0 = From, 1 = To }

in long IN_Value;

An example script is:

local long MBS_Value_Number;

MBS_Value_Number = <Variable>;

call with name "MBS_Parameter_Set_Number" in dictionary 5261,

 1 {Position: "XXXX"}, 0 {FromTo: From/Single}, MBS_Value_Number;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 673

MBS_Parameter_Set_Currency

Use this call to set the value of a currency parameter into the parameter list
memory. The MBS_Parameter_Load must be executed before using this
function to initialize the parameter list in memory.

The parameter list for this call is:

in integer IN_Position;

in integer IN_From; { 0 = From, 1 = To }

in currency IN_Value;

An example script is:

local currency MBS_Value_Currency;

MBS_Value_Currency = <Variable>;

call with name "MBS_Parameter_Set_Currency" in dictionary 5261,

 1 {Position: "XXXX"}, 0 {FromTo: From/Single},

MBS_Value_Currency;

C H A P T E R 9 H E L P E R F U N C T I O N S

674 G P P O W E R T O O L S

MBS_Parameter_Set_Boolean

Use this call to set the value of a boolean parameter into the parameter list
memory. The MBS_Parameter_Load must be executed before using this
function to initialize the parameter list in memory.

The parameter list for this call is:

in integer IN_Position;

in integer IN_From; { 0 = From, 1 = To }

in boolean IN_Value;

An example script is:

local boolean MBS_Value_Boolean;

MBS_Value_Boolean = <Variable>;

call with name "MBS_Parameter_Set_Boolean" in dictionary 5261,

 1 {Position: "XXXX"}, 0 {FromTo: From/Single},

MBS_Value_Boolean;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 675

MBS_Parameter_Set_Date

Use this call to set the value of a date parameter into the parameter list
memory. The MBS_Parameter_Load must be executed before using this
function to initialize the parameter list in memory.

The parameter list for this call is:

in integer IN_Position;

in integer IN_From; { 0 = From, 1 = To }

in date IN_Value;

An example script is:

local date MBS_Value_Date;

MBS_Value_Date = <Variable>;

call with name "MBS_Parameter_Set_Date" in dictionary 5261,

 1 {Position: "XXXX"}, 0 {FromTo: From/Single}, MBS_Value_Date;

C H A P T E R 9 H E L P E R F U N C T I O N S

676 G P P O W E R T O O L S

MBS_Parameter_Set_Time

Use this call to set the value of a time parameter into the parameter list
memory. The MBS_Parameter_Load must be executed before using this
function to initialize the parameter list in memory.

The parameter list for this call is:

in integer IN_Position;

in integer IN_From; { 0 = From, 1 = To }

in time IN_Value;

An example script is:

local time MBS_Value_Time;

MBS_Value_Time = <Variable>;

call with name "MBS_Parameter_Set_Time" in dictionary 5261,

 1 {Position: "XXXX"}, 0 {FromTo: From/Single}, MBS_Value_Time;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 677

MBS_Parameter_Get_String

Use this call to get the value of a string parameter into the parameter list
memory. The MBS_Parameter_Load must be executed before using this
function to initialize the parameter list in memory.

The parameter list for this call is:

in integer IN_Position;

in integer IN_From; { 0 = From, 1 = To }

out string OUT_Value;

An example script is:

local string MBS_Value_String;

call with name "MBS_Parameter_Get_String" in dictionary 5261,

 1 {Position: "XXXX"}, 0 {FromTo: From/Single}, MBS_Value_String;

C H A P T E R 9 H E L P E R F U N C T I O N S

678 G P P O W E R T O O L S

MBS_Parameter_Get_Number

Use this call to get the value of a number parameter into the parameter list
memory. The MBS_Parameter_Load must be executed before using this
function to initialize the parameter list in memory.

The parameter list for this call is:

in integer IN_Position;

in integer IN_From; { 0 = From, 1 = To }

out long OUT_Value;

An example script is:

local long MBS_Value_Number;

call with name "MBS_Parameter_Get_Number" in dictionary 5261,

 1 {Position: "XXXX"}, 0 {FromTo: From/Single}, MBS_Value_Number;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 679

MBS_Parameter_Get_Currency

Use this call to get the value of a currency parameter into the parameter
list memory. The MBS_Parameter_Load must be executed before using
this function to initialize the parameter list in memory.

The parameter list for this call is:

in integer IN_Position;

in integer IN_From; { 0 = From, 1 = To }

out currency OUT_Value;

An example script is:

local currency MBS_Value_Currency;

call with name "MBS_Parameter_Get_Currency" in dictionary 5261,

 1 {Position: "XXXX"}, 0 {FromTo: From/Single},

MBS_Value_Currency;

C H A P T E R 9 H E L P E R F U N C T I O N S

680 G P P O W E R T O O L S

MBS_Parameter_Get_Boolean

Use this call to get the value of a boolean parameter into the parameter list
memory. The MBS_Parameter_Load must be executed before using this
function to initialize the parameter list in memory.

The parameter list for this call is:

in integer IN_Position;

in integer IN_From; { 0 = From, 1 = To }

out boolean OUT_Value;

An example script is:

local boolean MBS_Value_Boolean;

call with name "MBS_Parameter_Get_Boolean" in dictionary 5261,

 1 {Position: "XXXX"}, 0 {FromTo: From/Single},

MBS_Value_Boolean;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 681

MBS_Parameter_Get_Date

Use this call to get the value of a date parameter into the parameter list
memory. The MBS_Parameter_Load must be executed before using this
function to initialize the parameter list in memory.

The parameter list for this call is:

in integer IN_Position;

in integer IN_From; { 0 = From, 1 = To }

out date OUT_Value;

An example script is:

local date MBS_Value_Date;

call with name "MBS_Parameter_Get_Date" in dictionary 5261,

 1 {Position: "XXXX"}, 0 {FromTo: From/Single}, MBS_Value_Date;

C H A P T E R 9 H E L P E R F U N C T I O N S

682 G P P O W E R T O O L S

MBS_Parameter_Get_Time

Use this call to get the value of a time parameter into the parameter list
memory. The MBS_Parameter_Load must be executed before using this
function to initialize the parameter list in memory.

The parameter list for this call is:

in integer IN_Position;

in integer IN_From; { 0 = From, 1 = To }

out time OUT_Value;

An example script is:

local time MBS_Value_Time;

call with name "MBS_Parameter_Get_Time" in dictionary 5261,

 1 {Position: "XXXX"}, 0 {FromTo: From/Single}, MBS_Value_Time;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 683

MBS_Convert

Use this call to convert a string representation of data to any datatype.

The parameter list for this call is:

in text IN_Text;

out anonymous field OUT_Data;

An example script is:

local text l_text;

local string l_data;

call with name "MBS_Convert " in dictionary 5261, l_text, l_data;

C H A P T E R 9 H E L P E R F U N C T I O N S

684 G P P O W E R T O O L S

MBS_Convert_Boolean

Use this call to convert a string representation of data to a Boolean
datatype.

The parameter list for this call is:

in text IN_Text;

out boolean OUT_Boolean;

An example script is:

local text l_text;

local boolean l_data;

call with name "MBS_Convert_Boolean" in dictionary 5261, l_text,

l_data;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 685

MBS_Convert_Currency

Use this call to convert a string representation of data to a Currency
datatype.

The parameter list for this call is:

in text IN_Text;

out currency OUT_Currency;

An example script is:

local text l_text;

local currency l_data;

call with name "MBS_Convert_Currency" in dictionary 5261, l_text,

l_data;

C H A P T E R 9 H E L P E R F U N C T I O N S

686 G P P O W E R T O O L S

MBS_Convert_Date

Use this call to convert a string representation of data to a Date datatype.

The parameter list for this call is:

in text IN_Text;

out date OUT_Date;

An example script is:

local text l_text;

local date l_data;

call with name "MBS_Convert_Date" in dictionary 5261, l_text,

l_data;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 687

MBS_Convert_Datetime

Use this call to convert a string representation of data to a Datetime
datatype.

The parameter list for this call is:

in text IN_Text;

out datetime OUT_Datetime;

An example script is:

local text l_text;

local datetime l_data;

call with name "MBS_Convert_Datetime" in dictionary 5261, l_text,

l_data;

C H A P T E R 9 H E L P E R F U N C T I O N S

688 G P P O W E R T O O L S

MBS_Convert_Integer

Use this call to convert a string representation of data to an Integer
datatype.

The parameter list for this call is:

in text IN_Text;

out integer OUT_Integer;

An example script is:

local text l_text;

local integer l_data;

call with name "MBS_Convert_Integer" in dictionary 5261, l_text,

l_data;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 689

MBS_Convert_Long

Use this call to convert a string representation of data to a Long datatype.

The parameter list for this call is:

in text IN_Text;

out long OUT_Long;

An example script is:

local text l_text;

local long l_data;

call with name "MBS_Convert_Long" in dictionary 5261, l_text,

l_data;

C H A P T E R 9 H E L P E R F U N C T I O N S

690 G P P O W E R T O O L S

MBS_Convert_String

Use this call to convert a string representation of data to a String datatype.

The parameter list for this call is:

in text IN_Text;

out string OUT_String;

An example script is:

local text l_text;

local string l_data;

call with name "MBS_Convert_String" in dictionary 5261, l_text,

l_data;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 691

MBS_Convert_Text

Use this call to convert a string representation of data to a Text datatype.

The parameter list for this call is:

in text IN_Text;

out text OUT_Text;

An example script is:

local text l_text;

local text l_data;

call with name "MBS_Convert_Text" in dictionary 5261, l_text,

l_data;

C H A P T E R 9 H E L P E R F U N C T I O N S

692 G P P O W E R T O O L S

MBS_Convert_Time

Use this call to convert a string representation of data to a Time datatype.

The parameter list for this call is:

in text IN_Text;

out time OUT_Time;

An example script is:

local text l_text;

local time l_data;

call with name "MBS_Convert_Time" in dictionary 5261, l_text,

l_data;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 693

MBS_Convert_VCurrency

Use this call to convert a string representation of data to a VCurrency
datatype.

The parameter list for this call is:

in text IN_Text;

out vcurrency OUT_VCurrency;

An example script is:

local text l_text;

local vcurrency l_data;

call with name "MBS_Convert_VCurrency" in dictionary 5261, l_text,

l_data;

C H A P T E R 9 H E L P E R F U N C T I O N S

694 G P P O W E R T O O L S

MBS_Return_By_Field

Use this call to return data to a field. Using this call can get around issues
caused when the field’s change script contains old() or diff() functions
when setting the field and running the script does not work as expected.

Return does not work across dictionaries, use the MBS_Return_By_Field2
helper function to set field and run script field instead.

The parameter list for this call is:

inout anonymous field INOUT_Field;

in anonymous IN_Value;

in boolean IN_Nofocus;

in boolean IN_Delayed;

in boolean IN_Forced;

An example script is:

call with name "MBS_Return_By_Field" in dictionary 5261, <Field>,

 <Value>, false {No Focus}, false {Delayed}, false {Forced};

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 695

MBS_Return_By_Field2

Use this call to return data to a field. It will not work properly if the field’s
change script contains old() or diff() functions, in this case look at the
MBS_Map_By_Field helper function instead.

This helper function uses set field and run script field and can be used
when the MBS_Return_By_Field helper function does not work.

The parameter list for this call is:

inout anonymous field INOUT_Field;

in anonymous IN_Value;

in boolean IN_Nofocus;

in boolean IN_Delayed;

in boolean IN_Forced;

An example script is:

call with name "MBS_Return_By_Field2" in dictionary 5261, <Field>,

 <Value>, false {No Focus}, false {Delayed}, false {Forced};

C H A P T E R 9 H E L P E R F U N C T I O N S

696 G P P O W E R T O O L S

MBS_Return_By_Reference

Use this call to return data to a field by reference. Using this call can get
around issues caused when the field’s change script contains old() or diff()
functions when setting the field and running the script does not work as
expected.

Return does not work across dictionaries, use the
MBS_Return_By_Reference2 helper function to set field and run script
field instead.

The parameter list for this call is:

inout reference INOUT_Field_Reference;

in anonymous IN_Value;

in boolean IN_Nofocus;

in boolean IN_Delayed;

in boolean IN_Forced;

An example script is:

call with name "MBS_Return_By_Reference" in dictionary 5261, <Field

Reference>,

 <Value>, false {No Focus}, false {Delayed}, false {Forced};

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 697

MBS_Return_By_Reference2

Use this call to return data to a field by reference. It will not work properly
if the field’s change script contains old() or diff() functions, in this case
look at the MBS_Map_By_Reference helper function instead.

This helper function uses set field and run script field and can be used
when the MBS_Return_By_Reference helper function does not work.

The parameter list for this call is:

inout reference INOUT_Field_Reference;

in anonymous IN_Value;

in boolean IN_Nofocus;

in boolean IN_Delayed;

in boolean IN_Forced;

An example script is:

call with name "MBS_Return_By_Reference2" in dictionary 5261, <Field

Reference>,

 <Value>, false {No Focus}, false {Delayed}, false {Forced};

C H A P T E R 9 H E L P E R F U N C T I O N S

698 G P P O W E R T O O L S

MBS_Map_By_Field

Use this call to map data to a field. Using this call can get around issues
caused when the field’s change script contains old() or diff() functions
when setting the field and running the script does not work as expected.

Use Window_PullFocus() command or MBS_Pull_Window_Focus Helper
Function to force final field’s change script to execute.

The parameter list for this call is:

inout anonymous field INOUT_Field;

in anonymous IN_Value;

An example script is:

call with name "MBS_Map_By_Field" in dictionary 5261, <Field>,

 <Value>;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 699

MBS_Map_By_Reference

Use this call to map data to a field by reference. Using this call can get
around issues caused when the field’s change script contains old() or diff()
functions when setting the field and running the script does not work as
expected.

Use Window_PullFocus() command or MBS_Pull_Window_Focus Helper
Function to force final field’s change script to execute.

The parameter list for this call is:

inout reference INOUT_Field_Reference;

in anonymous IN_Value;

An example script is:

call with name "MBS_Map_By_Reference" in dictionary 5261, <Field>,

 <Value>;

C H A P T E R 9 H E L P E R F U N C T I O N S

700 G P P O W E R T O O L S

MBS_Map

Use this call to map data to a field of any datatype. Using this call can get
around issues caused when the field’s change script contains old() or diff()
functions when setting the field and running the script does not work as
expected.

Use Window_PullFocus() command or MBS_Pull_Window_Focus Helper
Function to force final field’s change script to execute.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

inout anonymous field IN_Field_Value;

out integer OUT_Status;

An example script is:

local integer l_status;

local string l_field;

l_field = "Field";

call with name "MBS_Map" in dictionary 5261, Dictionary, "Form",

"Window", "Field", l_field, l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 701

MBS_Map_Boolean

Use this call to map data to a Boolean field. Using this call can get around
issues caused when the field’s change script contains old() or diff()
functions when setting the field and running the script does not work as
expected.

Use Window_PullFocus() command or MBS_Pull_Window_Focus Helper
Function to force final field’s change script to execute.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

in boolean IN_Field_Value;

out integer OUT_Status;

An example script is:

local integer l_status;

local boolean l_field;

l_field = false;

call with name "MBS_Map_Boolean" in dictionary 5261, Dictionary,

"Form", "Window", "Field", l_field, l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

702 G P P O W E R T O O L S

MBS_Map_Date

Use this call to map data to a Date field. Using this call can get around
issues caused when the field’s change script contains old() or diff()
functions when setting the field and running the script does not work as
expected.

Use Window_PullFocus() command or MBS_Pull_Window_Focus Helper
Function to force final field’s change script to execute.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

in date IN_Field_Value;

out integer OUT_Status;

An example script is:

local integer l_status;

local date l_field;

l_field = sysdate();

call with name "MBS_Map_Date" in dictionary 5261, Dictionary,

"Form", "Window", "Field", l_field, l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 703

MBS_Map_Numeric

Use this call to map data to a Numeric field. Using this call can get around
issues caused when the field’s change script contains old() or diff()
functions when setting the field and running the script does not work as
expected.

Use Window_PullFocus() command or MBS_Pull_Window_Focus Helper
Function to force final field’s change script to execute.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

in vcurrency IN_Field_Value;

out integer OUT_Status;

An example script is:

local integer l_status;

local vcurrency l_field;

l_field = 0;

call with name "MBS_Map_Numeric" in dictionary 5261, Dictionary,

"Form", "Window", "Field", l_field, l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

704 G P P O W E R T O O L S

MBS_Map_String

Use this call to map data to a String field. Using this call can get around
issues caused when the field’s change script contains old() or diff()
functions when setting the field and running the script does not work as
expected.

Use Window_PullFocus() command or MBS_Pull_Window_Focus Helper
Function to force final field’s change script to execute.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

in string IN_Field_Value;

out integer OUT_Status;

An example script is:

local integer l_status;

local string l_field;

l_field = "Field";

call with name "MBS_Map_String" in dictionary 5261, Dictionary,

"Form", "Window", "Field", l_field, l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 705

MBS_Map_Text

Use this call to map data to a Text field. Using this call can get around
issues caused when the field’s change script contains old() or diff()
functions when setting the field and running the script does not work as
expected.

Use Window_PullFocus() command or MBS_Pull_Window_Focus Helper
Function to force final field’s change script to execute.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

in text IN_Field_Value;

out integer OUT_Status;

An example script is:

local integer l_status;

local text l_field;

l_field = "Field";

call with name "MBS_Map_Text" in dictionary 5261, Dictionary,

"Form", "Window", "Field", l_field, l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

706 G P P O W E R T O O L S

MBS_Map_Time

Use this call to map data to a Time field. Using this call can get around
issues caused when the field’s change script contains old() or diff()
functions when setting the field and running the script does not work as
expected.

Use Window_PullFocus() command or MBS_Pull_Window_Focus Helper
Function to force final field’s change script to execute.

The parameter list for this call is:

in integer IN_Prod_ID;

in string IN_Form_Name;

in string IN_Window_Name;

in string IN_Field_Name;

in time IN_Field_Value;

out integer OUT_Status;

An example script is:

local integer l_status;

local time l_field;

l_field = systime();

call with name "MBS_Map_Time" in dictionary 5261, Dictionary,

"Form", "Window", "Field", l_field, l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 707

MBS_Get_Message

Use this call to retrieve the message text for a Message ID for the current
language (or default language if no language specific message text
available. To setup Messages use the Messages Setup window.

The parameter list for this call is:

in integer IN_Message;

out string OUT_Message;

An example script is:

local string l_message;

call with name "MBS_Get_Message" in dictionary 5261, "<Message ID>",

 l_message;

warning l_message;

C H A P T E R 9 H E L P E R F U N C T I O N S

708 G P P O W E R T O O L S

MBS_Get_Message_Prompts

Use this call to retrieve the message text and prompts for a Message ID for
the current language (or default language if no language specific message
text available. To setup Messages use the Messages Setup window.

The parameter list for this call is:

in integer IN_Message;

out string OUT_Message;

out string OUT_Prompt1;

out string OUT_Prompt2;

out string OUT_Prompt3;

An example script is:

local string l_message, l_prompt1, l_prompt2, l_prompt3;

call with name "MBS_Get_Message_Prompts" in dictionary 5261,

"<Message ID>",

l_message, l_prompt1, l_prompt2, l_prompt3;

if ask(l_message, l_prompt1, l_prompt2, l_prompt3)= ASKBUTTON1 then

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 709

MBS_getmsg

Use this call to get a message resource from any installed dictionary.

The parameter list for this call is:

in integer IN_DictID;

in integer IN_ID;

out string OUT_Message;

An example script is:

local string l_message;

call with name "MBS_getmsg" in dictionary 5261, 0, 1765,

 l_message;

warning l_message;

C H A P T E R 9 H E L P E R F U N C T I O N S

710 G P P O W E R T O O L S

MBS_Get_Error_Message

Use this call to get a system Error Message from the
SY_Error_Messages_MSTR table or SY_Error_Messages_MSTR_3rd table
(if the Error Number >= 100000).

The parameter list for this call is:

in long IN_Error_Number;

out string OUT_Message;

An example script is:

local string l_message;

call with name "MBS_Get_Error_Message" in dictionary 5261, 1,

 l_message;

warning l_message;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 711

MBS_Show_Dialog

Use this call to display a system dialog of the selected mode.

The parameter list for this call is:

in string IN_Message;

in integer IN_Mode; {1 - Info, 2 - Warning, 3 - Error, 4 - Debug}

An example script is:

local string l_message;

call with name " MBS_Show_Dialog" in dictionary 5261, 1,

 l_message, 1;

C H A P T E R 9 H E L P E R F U N C T I O N S

712 G P P O W E R T O O L S

MBS_Show_Dialog_Text

Use this call to display a system text dialog of the selected mode. The text
can contain tabs, char(9), and carriage returns, char(13).

The parameter list for this call is:

in text IN_Message_Text;

in integer IN_Mode; {1 - Info, 2 - Warning, 3 - Error, 4 - Debug}

An example script is:

local text l_message_text;

call with name " MBS_Show_Dialog" in dictionary 5261, 1,

 l_message_text, 1;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 713

MBS_Ask_Dialog

Use this call to display an ask() system dialog with the selected buttons. It
works well with the MBS_Get_Message_Prompts helper function.

The parameter list for this call is:

in string IN_Message;

in string IN_Prompt1;

in string IN_Prompt2;

in string IN_Prompt3;

out integer OUT_Response;

An example script is:

local string l_message, l_prompt1, l_prompt2, l_prompt3;

local integer l_response;

call with name "MBS_Ask_Dialog" in dictionary 5261, l_message,

 l_prompt1, l_prompt2, l_prompt3, l_response;

C H A P T E R 9 H E L P E R F U N C T I O N S

714 G P P O W E R T O O L S

MBS_Ask_Dialog_Text

Use this call to display an ask() text system dialog with the selected
buttons. It works well with the MBS_Get_Message_Prompts helper
function. The text can contain tabs, char(9), and carriage returns, char(13).

The parameter list for this call is:

in text IN_Message_Text;

in string IN_Prompt1;

in string IN_Prompt2;

in string IN_Prompt3;

out integer OUT_Response;

An example script is:

local text l_message_text, l_prompt1, l_prompt2, l_prompt3;

local integer l_response;

call with name "MBS_Ask_Dialog" in dictionary 5261, l_message_text,

 l_prompt1, l_prompt2, l_prompt3, l_response;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 715

MBS_Get_DateTime

Use this call to retrieve the current datetime value with date, time and
milliseconds.

The parameter list for this call is:

in boolean IN_UTCTime;

out date OUT_Date;

out time OUT_Time;

out integer OUT_Milliseconds;

An example script is:

local date l_date;

local time l_time;

local integer l_milliseconds;

call with name "MBS_Get_DateTime" in dictionary 5261, true {UTC},

l_date, l_time, l_milliseconds;

C H A P T E R 9 H E L P E R F U N C T I O N S

716 G P P O W E R T O O L S

MBS_Token

Use this call break a character separated string into individual string
values.

The parameter list for this call is:

in string IN_string;

in string IN_token;

in integer IN_position;

out string OUT_string;

An example script is:

local string l_parameters;

local string l_value;

call with name "MBS_Token" in dictionary 5261,

 l_parameters, CH_COMMA, 1, l_value;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 717

MBS_Field_ParseText

Use this call to break a text field into lines, similar to Field_ParseText()
Dexterity function, but can return text variables longer than 255 characters.

The parameter list for this call is:

in text IN_Text;

in integer IN_Characters;

inout integer INOUT_Position;

out text OUT_Text;

An example script is:

inout text MBS_InText;

local integer MBS_StartPos;

local text MBS_Text;

repeat

 call with name "MBS_Field_ParseText" in dictionary 5261,

 MBS_InText, 32767, MBS_StartPos, MBS_Text;

until MBS_StartPos = 0;

C H A P T E R 9 H E L P E R F U N C T I O N S

718 G P P O W E R T O O L S

MBS_subtext

Use this call to return part of a text field, similar to substring() Dexterity
function, but can return text variables longer than 255 characters.

The parameter list for this call is:

in text IN_Text;

out text OUT_Text;

An example script is:

inout text MBS_InText;

local text MBS_Text;

call with name "MBS_subtext" in dictionary 5261,

 MBS_InText, 1 {Start}, 300 {Length}, MBS_Text;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 719

MBS_Security_Form_Check

Use this call to manually check security to identify if additional fields are
available on an alternate or modified window.

The parameter list for this call is:

in integer dictid;

in string resname;

out boolean access;

out integer altdictid;

out boolean modified;

An example script is:

local boolean access, modified;

local integer altdictid;

call with name "MBS_Security_Form_Check" in dictionary 5261,

 DYNAMICS, "PM_Vendor_Maintenance", access, altdictid, modified;

if access and altdictid = DYNAMICS and modified then

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

720 G P P O W E R T O O L S

MBS_Trigger_Disable

Use this call to programmatically update the Trigger Setup table to mark a
trigger as disabled.

The parameter list for this call is:

in string IN_TriggerID;

An example script is:

call with name "MBS_Trigger_Disable" in dictionary 5261, "XXXX";

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 721

MBS_Trigger_Enable

Use this call to programmatically update the Trigger Setup table to mark a
trigger as enabled (not disabled).

The parameter list for this call is:

in string IN_TriggerID;

An example script is:

call with name "MBS_Trigger_Enable" in dictionary 5261, "XXXX";

C H A P T E R 9 H E L P E R F U N C T I O N S

722 G P P O W E R T O O L S

MBS_Trigger_DisableSingle

Use this call temporarily disable an already started trigger.

The parameter list for this call is:

in string IN_TriggerID;

An example script is:

call with name "MBS_Trigger_DisableSingle" in dictionary 5261,

"XXXX";

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 723

MBS_Trigger_EnableSingle

Use this call re-enable a temporarily disabled trigger.

The parameter list for this call is:

in string IN_TriggerID;

An example script is:

call with name "MBS_Trigger_EnableSingle" in dictionary 5261,

"XXXX";

C H A P T E R 9 H E L P E R F U N C T I O N S

724 G P P O W E R T O O L S

MBS_Is_Trigger_Started

Use this call check if a trigger is already started.

The parameter list for this call is:

in string IN_TriggerID;

out boolean OUT_Started;

An example script is:

local booelan l_started;

call with name "MBS_Is_Trigger_Started" in dictionary 5261, "XXXX",

l_started;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 725

MBS_Is_Trigger_Enabled

Use this call check if a trigger is temporarily disabled or not.

The parameter list for this call is:

in string IN_TriggerID;

out boolean OUT_Enabled;

An example script is:

local booelan l_enabled;

call with name "MBS_Is_Trigger_Enabled" in dictionary 5261, "XXXX",

l_enabled;

C H A P T E R 9 H E L P E R F U N C T I O N S

726 G P P O W E R T O O L S

MBS_Exit_After_Processes

Use this call to request Microsoft Dynamics GP to exit once all background
processes have been completed.

The parameter list for this call is:

<None>

An example script is:

call with name "MBS_Exit_After_Processes" in dictionary 5261;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 727

MBS_Switch_Company

Use this call to request Microsoft Dynamics GP to switch to a different
company once all background processes are completed.

It can accept the company by its numeric Company ID, or by the
Intercompany ID (Database name). If the company is left blank it will
move to the next company in the drop down list.

There is an option to exit GP if it fails to identify the next company to
move to.

The parameter list for this call is:

in string IN_Company;

in boolean IN_Exit_on_Fail;

An example script is:

call with name "MBS_Switch_Company" in dictionary 5261, " <Blank for

next, Company ID or Database>", <true/false: Exit if Fail>;

C H A P T E R 9 H E L P E R F U N C T I O N S

728 G P P O W E R T O O L S

MBS_CompanyColorGetRGB

Use this call to retrieve the RGB color data for the current GP Power Tools
Company Color Theme.

It can be used to allow a .Net window to be colored to match the Dexterity
windows.

The modes (1-5) are:

1. Window Toolbar
2. Window Background (commonly used)
3. Window Heading
4. Field Background (commonly used)
5. Scrolling Window Line

The parameter list for this call is:

in integer IN_Mode;

out integer OUT_red_level, OUT_green_level, OUT_blue_level;

An example script is:

local integer redColor;

local integer greenColor;

local integer blueColor;

call with name "MBS_CompanyColorGetRGB" in dictionary 5261, 2,

redColor, greenColor, blueColor;

Below is an excerpt of an example of how the call can be used with the
.Net Interop in Dexterity to set colors on a dynamically created dialog:

{ Color Coding - Using function in GP Power Tools Build 29 or later }

buttonOk.BackColor = Color.FromArgb(253, 253, 253);

buttonCancel.BackColor = Color.FromArgb(253, 253, 253);

call with name "MBS_CompanyColorGetRGB" in dictionary 5261, 2, redColor,

greenColor, blueColor;

if (redColor + greenColor + blueColor) > 0 then

 l_form.BackColor = Color.FromArgb(redColor, greenColor, blueColor);

end if;

call with name "MBS_CompanyColorGetRGB" in dictionary 5261, 4, redColor,

greenColor, blueColor;

if (redColor + greenColor + blueColor) > 0 then

 textBox.BackColor = Color.FromArgb(redColor, greenColor, blueColor);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 729

MBS_Copy_To_Clipboard

Use this call to place text data onto the windows clipboard.

The parameter list for this call is:

in text IN_Text;

An example script is:

call with name "MBS_Copy_To_Clipboard" in dictionary 5261, "Text";

C H A P T E R 9 H E L P E R F U N C T I O N S

730 G P P O W E R T O O L S

MBS_Copy_From_Clipboard

Use this call to retrieve text data from the windows clipboard.

It can be used to retrieve formatted data from an Microsoft Excel
spreadsheet and parsed using the MBS_SQL_Parse_Data series of Helper
Functions.

The parameter list for this call is:

out text OUT_Text;

An example script is:

local text l_text;

call with name "MBS_Copy_From_Clipboard" in dictionary 5261, l_text;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 731

MBS_Show_Desktop_Alert

Use this call to display a desktop alert. It can be used instead of a warning
statement to display information and does not require a mouse click to
dismiss.

The parameter list for this call is:

in string IN_Title;

in text IN_Message;

in integer IN_Mode;

An example script is:

call with name "MBS_Show_Desktop_Alert" in dictionary 5261, "Title",

"Message", 1 {1 - Information, 2 - Warning, 3 - Error, 4 - Debug};

C H A P T E R 9 H E L P E R F U N C T I O N S

732 G P P O W E R T O O L S

MBS_Email_API

Use this Helper Function to send emails using the GP Power Tools email
engine.

The parameter list for this call is:

in string IN_EmailFrom;

in string IN_EmailTo;

in string IN_EmailCC;

in string IN_EmailBCC;

in string IN_EmailSubject;

in text IN_EmailBody;

in text IN_EmailSignature;

in boolean IN_EmailSignatureDefault;

in text IN_EmailAttachments;

in boolean IN_EmailPreview;

in boolean IN_EmailAutoSend;

An example script is:

local string l_EmailFrom;

local string l_EmailTo;

local string l_EmailCC;

local string l_EmailBCC;

local string l_EmailSubject;

local text l_EmailBody;

local text l_EmailSignature;

local boolean l_EmailSignatureDefault;

local text l_EmailAttachments;

local boolean l_EmailPreview;

local boolean l_EmailAutoSend;

l_EmailTo = "email@domain.com";

l_EmailSubject = "Email API Test";

l_EmailBody = "This is a test of the Email API"+char(13);

l_EmailSignatureDefault = true;

l_EmailAttachments = l_EmailAttachments + "C:\Dex1000\Data\Dex.ini"+char(13);

l_EmailAttachments = l_EmailAttachments + "C:\Dex1100\Data\Dex.ini"+char(13);

l_EmailPreview = false;

l_EmailAutoSend = false;

call with name "MBS_Email_API" in dictionary 5261,

 l_EmailFrom, l_EmailTo, l_EmailCC, l_EmailBCC, l_EmailSubject,

 l_EmailBody, l_EmailSignature, l_EmailSignatureDefault,

 l_EmailAttachments, l_EmailPreview, l_EmailAutoSend;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 733

MBS_Add_Virtual_Field

This call is used to add a Virtual Field to a window. It must be called from
a Form Pre, Before Original trigger.

The parameter list for this call is:

in integer IN_Dict;

in string IN_Form;

in string IN_Window;

in integer IN_FieldDict;

in string IN_Field;

in integer IN_Top;

in integer IN_Left;

in integer IN_Height;

in integer IN_Width;

in integer IN_Vertical_Resize;

in integer IN_Horizontal_Resize;

in boolean IN_Editable;

in boolean IN_Border;

in boolean IN_Triggers;

in string IN_Default;

out reference OUT_FieldReference;

An example script is:

local reference MBS_VF_FieldReference;

call with name "MBS_Add_Virtual_Field" in dictionary 5261,

 0 { Form Dictionary }, "<Form>" { Form }, "<Window>" { Window },

 0 { Field Dictionary }, "<Field>" { Field },

 34 { Top }, 136 { Left }, 20 { Height }, 177 { Width },

 1 { Vertical Resize (T,C,B,TG,G,BG) }, 1 { Horizontal Resize (L,C,R,LG,G,RG) },

 true {Editable }, true { Border }, true { Create Triggers }, "" { Default Value/Caption },

 MBS_VF_FieldReference { Field Reference };

C H A P T E R 9 H E L P E R F U N C T I O N S

734 G P P O W E R T O O L S

MBS_Add_Virtual_FieldPrompt

This call is used to add a Virtual Field and prompt to a window. It must be
called from a Form Pre, Before Original trigger.

The parameter list for this call is:

in integer IN_Dict;

in string IN_Form;

in string IN_Window;

in integer IN_FieldDict;

in string IN_Field;

in integer IN_Top;

in integer IN_Left;

in integer IN_Height;

in integer IN_Width;

in integer IN_Vertical_Resize;

in integer IN_Horizontal_Resize;

in boolean IN_Editable;

in boolean IN_Border;

in boolean IN_Triggers;

in string IN_Default;

out reference OUT_FieldReference;

in integer IN_PromptFieldDict;

in string IN_PromptField;

in integer IN_PromptWidth;

in string IN_PromptFieldLabel;

out reference OUT_PromptReference;

An example script is:

local reference MBS_VF_FieldReference;

local reference MBS_VF_PromptReference;

call with name "MBS_Add_Virtual_FieldPrompt" in dictionary 5261,

 0 { Form Dictionary }, "<Form>" { Form }, "<Window>" { Window },

 0 { Field Dictionary }, "<Field>" { Field },

 34 { Top }, 136 { Left }, 20 { Height }, 177 { Width },

 1 { Vertical Resize (T,C,B,TG,G,BG) }, 1 { Horizontal Resize (L,C,R,LG,G,RG) },

 true {Editable }, true { Border }, true { Create Triggers }, "" { Default Value/Caption },

 MBS_VF_FieldReference { Field Reference },

 5261 { Prompt Dictionary }, "VF_Prompt_01" { Prompt Field increment as needed 01-20 },

 128 { Prompt Width }, "<Prompt>" { Prompt Label },

 MBS_VF_PromptReference { Prompt Reference };

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 735

MBS_Add_Virtual_FieldFormat

This call is used to add a Virtual Field and format to a window. It must be
called from a Form Pre, Before Original trigger.

The parameter list for this call is:

in integer IN_Dict;

in string IN_Form;

in string IN_Window;

in integer IN_FieldDict;

in string IN_Field;

in integer IN_Top;

in integer IN_Left;

in integer IN_Height;

in integer IN_Width;

in integer IN_Vertical_Resize;

in integer IN_Horizontal_Resize;

in boolean IN_Editable;

in boolean IN_Border;

in boolean IN_Triggers;

in string IN_Default;

out reference OUT_FieldReference;

in integer IN_FormatFieldDict;

in string IN_FormatField;

in integer IN_FormatValue;

out reference OUT_FormatReference;

An example script is:

local reference MBS_VF_FieldReference;

local reference MBS_VF_FormatReference;

call with name "MBS_Add_Virtual_FieldFormat" in dictionary 5261,

 0 { Form Dictionary }, "<Form>" { Form }, "<Window>" { Window },

 0 { Field Dictionary }, "<Field>" { Field },

 34 { Top }, 136 { Left }, 20 { Height }, 177 { Width },

 1 { Vertical Resize (T,C,B,TG,G,BG) }, 1 { Horizontal Resize (L,C,R,LG,G,RG) },

 true {Editable }, true { Border }, true { Create Triggers }, "" { Default Value/Caption },

 MBS_VF_FieldReference { Field Reference },

 5261 { Format Dictionary }, "VF_Format_Integer_01" {Format Field increment as needed 01-20},

 1 { Format Value },

 MBS_VF_FormatReference { Format Reference };

C H A P T E R 9 H E L P E R F U N C T I O N S

736 G P P O W E R T O O L S

MBS_Add_Virtual_FieldPromptLookup

This call is used to add a Virtual Field, prompt and lookup to a window. It
must be called from a Form Pre, Before Original trigger.

The parameter list for this call is:

in integer IN_Dict;

in string IN_Form;

in string IN_Window;

in integer IN_FieldDict;

in string IN_Field;

in integer IN_Top;

in integer IN_Left;

in integer IN_Height;

in integer IN_Width;

in integer IN_Vertical_Resize;

in integer IN_Horizontal_Resize;

in boolean IN_Editable;

in boolean IN_Border;

in boolean IN_Triggers;

in string IN_Default;

out reference OUT_FieldReference;

in integer IN_PromptFieldDict;

in string IN_PromptField;

in integer IN_PromptWidth;

in string IN_PromptFieldLabel;

out reference OUT_PromptReference;

in integer IN_LookupFieldDict;

in string IN_LookupField;

out reference OUT_LookupReference;

An example script is:

local reference MBS_VF_FieldReference;

local reference MBS_VF_PromptReference;

local reference MBS_VF_LookupReference;

call with name "MBS_Add_Virtual_FieldPromptLookup" in dictionary 5261,

 0 { Form Dictionary }, "<Form>" { Form }, "<Window>" { Window },

 0 { Field Dictionary }, "<Field>" { Field },

 34 { Top }, 136 { Left }, 20 { Height }, 177 { Width },

 1 { Vertical Resize (T,C,B,TG,G,BG) }, 1 { Horizontal Resize (L,C,R,LG,G,RG) },

 true {Editable }, true { Border }, true { Create Triggers }, "" { Default Value/Caption },

 MBS_VF_FieldReference { Field Reference },

 5261 { Prompt Dictionary }, "VF_Prompt_01" { Prompt Field increment as needed 01-20 },

 128 { Prompt Width }, "<Prompt>" { Prompt Label },

 MBS_VF_PromptReference { Prompt Reference },

 5261 { Lookup Dictionary }, "VF_Lookup_Button_01" {Lookup Field increment as needed 01-20},

 MBS_VF_LookupReference { Lookup Reference };

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 737

MBS_Add_Virtual_FieldPromptFormat

This call is used to add a Virtual Field, prompt and format to a window. It
must be called from a Form Pre, Before Original trigger.

The parameter list for this call is:

in integer IN_Dict;

in string IN_Form;

in string IN_Window;

in integer IN_FieldDict;

in string IN_Field;

in integer IN_Top;

in integer IN_Left;

in integer IN_Height;

in integer IN_Width;

in integer IN_Vertical_Resize;

in integer IN_Horizontal_Resize;

in boolean IN_Editable;

in boolean IN_Border;

in boolean IN_Triggers;

in string IN_Default;

out reference OUT_FieldReference;

in integer IN_PromptFieldDict;

in string IN_PromptField;

in integer IN_PromptWidth;

in string IN_PromptFieldLabel;

out reference OUT_PromptReference;

in integer IN_FormatFieldDict;

in string IN_FormatField;

in integer IN_FormatValue;

out reference OUT_FormatReference;

An example script is:

local reference MBS_VF_FieldReference;

local reference MBS_VF_PromptReference;

local reference MBS_VF_FormatReference;

call with name "MBS_Add_Virtual_FieldPromptFormat" in dictionary 5261,

 0 { Form Dictionary }, "<Form>" { Form }, "<Window>" { Window },

 0 { Field Dictionary }, "<Field>" { Field },

 34 { Top }, 136 { Left }, 20 { Height }, 177 { Width },

 1 { Vertical Resize (T,C,B,TG,G,BG) }, 1 { Horizontal Resize (L,C,R,LG,G,RG) },

 true {Editable }, true { Border }, true { Create Triggers }, "" { Default Value/Caption },

 MBS_VF_FieldReference { Field Reference },

 5261 { Prompt Dictionary }, "VF_Prompt_01" { Prompt Field increment as needed 01-20 },

 128 { Prompt Width }, "<Prompt>" { Prompt Label },

 MBS_VF_PromptReference { Prompt Reference },

 5261 { Format Dictionary }, "VF_Format_Integer_01" {Format Field increment as needed 01-20},

 1 { Format Value },

 MBS_VF_FormatReference { Format Reference };

C H A P T E R 9 H E L P E R F U N C T I O N S

738 G P P O W E R T O O L S

MBS_Add_Virtual_FieldAll

This call is used to add a Virtual Field, prompt, lookup and format to a
window. It must be called from a Form Pre, Before Original trigger.

The parameter list for this call is:

in integer IN_Dict;

in string IN_Form;

in string IN_Window;

in integer IN_FieldDict;

in string IN_Field;

in integer IN_Top;

in integer IN_Left;

in integer IN_Height;

in integer IN_Width;

in integer IN_Vertical_Resize;

in integer IN_Horizontal_Resize;

in boolean IN_Editable;

in boolean IN_Border;

in boolean IN_Triggers;

in string IN_Default;

out reference OUT_FieldReference;

in integer IN_PromptFieldDict;

in string IN_PromptField;

in integer IN_PromptWidth;

in string IN_PromptFieldLabel;

out reference OUT_PromptReference;

in integer IN_LookupFieldDict;

in string IN_LookupField;

out reference OUT_LookupReference;

in integer IN_FormatFieldDict;

in string IN_FormatField;

in integer IN_FormatValue;

out reference OUT_FormatReference;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 739

An example script is:

local reference MBS_VF_FieldReference;

local reference MBS_VF_PromptReference;

local reference MBS_VF_LookupReference;

local reference MBS_VF_FormatReference;

call with name "MBS_Add_Virtual_FieldAll" in dictionary 5261,

 0 { Form Dictionary }, "<Form>" { Form }, "<Window>" { Window },

 0 { Field Dictionary }, "<Field>" { Field },

 34 { Top }, 136 { Left }, 20 { Height }, 177 { Width },

 1 { Vertical Resize (T,C,B,TG,G,BG) }, 1 { Horizontal Resize (L,C,R,LG,G,RG) },

 true {Editable }, true { Border }, true { Create Triggers }, "" { Default Value/Caption },

 MBS_VF_FieldReference { Field Reference },

 5261 { Prompt Dictionary }, "VF_Prompt_01" { Prompt Field increment as needed 01-20 },

 128 { Prompt Width }, "<Prompt>" { Prompt Label },

 MBS_VF_PromptReference { Prompt Reference },

 5261 { Lookup Dictionary }, "VF_Lookup_Button_01" {Lookup Field increment as needed 01-20},

 MBS_VF_LookupReference { Lookup Reference },

 5261 { Format Dictionary }, "VF_Format_Integer_01" {Format Field increment as needed 01-20},

 1 { Format Value },

 MBS_VF_FormatReference { Format Reference };

C H A P T E R 9 H E L P E R F U N C T I O N S

740 G P P O W E R T O O L S

MBS_Add_Virtual_FieldLine

This call is used to add a Virtual Field line to a window. It must be called
from a Form Pre, Before Original trigger.

The parameter list for this call is:

in integer IN_Dict;

in string IN_Form;

in string IN_Window;

in integer IN_FieldDict;

in string IN_Field;

in integer IN_Top;

in integer IN_Vertical_Resize;

out reference OUT_FieldReference;

An example script is:

local reference MBS_VF_LineReference;

call with name "MBS_Add_Virtual_FieldLine" in dictionary 5261,

 0 { Form Dictionary }, "<Form>" { Form }, "<Window>" { Window },

 5261 { Line Dictionary }, "VF_Line_01" { Line Field increment as needed 01-10 },

 34 { Top },

 3 { Vertical Resize (T,C,B) },

 MBS_VF_LineReference { Line Reference };

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 741

MBS_Expand_Virtual_Field_Window

This call is used to expand a window and move existing fields down in
prepation to add a Virtual Field to a window. It must be called from a
Form Pre, Before Original trigger.

The parameter list for this call is:

in integer IN_Dict;

in string IN_Form;

in string IN_Window;

in integer IN_Vertical_Space;

in boolean IN_Navigation;

in boolean IN_Add_Line;

in string IN_SortBy;

in string IN_FieldList;

out integer OUT_Vertical_Pos;

An example script is:

local integer MBS_VF_VerticalPos;

call with name "MBS_Expand_Virtual_Field_Window" in dictionary 5261,

 0 { Form Dictionary }, "<Form>" { Form }, "<Window>" { Window },

 1*19 { Space to add }, true { Navigation Buttons }, true { Add Line },

 "Sort By" { Sort By Field }, "Note Absent Button - Toolbar;Note Present Button -

Toolbar;WindowHelp" { Additional Field List },

 MBS_VF_VerticalPos;

C H A P T E R 9 H E L P E R F U N C T I O N S

742 G P P O W E R T O O L S

MBS_Get_Field_Reference

This call is used to get a reference to an existing field or to a Virtual Field
on a window.

The parameter list for this call is:

in integer IN_Dict;

in string IN_Form;

in string IN_Window;

in integer IN_FieldDict;

in string IN_Field;

out reference OUT_Reference;

An example script is:

local reference l_reference;

call with name "MBS_Get_Field_Reference" in dictionary 5261,

Dictionary, "Form", "Window", FieldDictionary, "Field", l_reference;

if not empty(l_reference) then

 warning str(field(l_reference));

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 743

MBS_Get_Virtual_Field

This call is used to get the value of a Virtual Field on a window.

The parameter list for this call is:

in integer IN_Prod_ID;

inout reference INOUT_Reference;

inout anonymous field OUT_Field_Value;

out integer OUT_Status;

An example script is:

local integer l_status;

call with name "MBS_Get_Virtual_Field" in dictionary 5261,

Dictionary, <Reference>, <Field>, l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

744 G P P O W E R T O O L S

MBS_Set_Virtual_Field

This call is used to set the value of a Virtual Field on a window.

The parameter list for this call is:

in integer IN_Prod_ID;

inout reference INOUT_Reference;

inout anonymous field IN_Field_Value;

in boolean IN_Run_Flag;

out integer OUT_Status;

An example script is:

local integer l_status;

call with name "MBS_Set_Virtual_Field" in dictionary 5261,

Dictionary, <Reference>, <Field>, true {run script}, l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 745

MBS_Map_Virtual_Field

This call is used to map the value of a Virtual Field on a window.

The parameter list for this call is:

in integer IN_Prod_ID;

inout reference INOUT_Reference;

inout anonymous field IN_Field_Value;

out integer OUT_Status;

An example script is:

local integer l_status;

call with name "MBS_Map_Virtual_Field" in dictionary 5261,

Dictionary, <Reference>, <Field>, l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

746 G P P O W E R T O O L S

MBS_Get_Virtual_Field_Caption

This call is used to get the caption of a Virtual Field on a window.

The parameter list for this call is:

in integer IN_Prod_ID;

inout reference INOUT_Reference;

out string OUT_Field_Caption;

out integer OUT_Status;

An example script is:

local integer l_status;

local string l_caption;

call with name "MBS_Get_Virtual_Field_Caption" in dictionary 5261,

Dictionary, <Reference>, l_caption, l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 747

MBS_Set_Virtual_Field_Caption

This call is used to set the caption of a Virtual Field on a window.

The parameter list for this call is:

in integer IN_Prod_ID;

inout reference INOUT_Reference;

in string IN_Field_Caption;

out integer OUT_Status;

An example script is:

local integer l_status;

call with name "MBS_Set_Virtual_Field_Caption" in dictionary 5261,

Dictionary, <Reference>, "Caption", l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

748 G P P O W E R T O O L S

MBS_Get_Virtual_Field_Tooltip

This call is used to get the tooltip of a Virtual Field on a window.

The parameter list for this call is:

in integer IN_Prod_ID;

inout reference INOUT_Reference;

out string OUT_Field_Tooltip;

out integer OUT_Status;

An example script is:

local integer l_status;

local string l_tooltip;

call with name "MBS_Get_Virtual_Field_Tooltip" in dictionary 5261,

Dictionary, <Reference>, l_tooltip, l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 749

MBS_Set_Virtual_Field_Tooltip

This call is used to set the tooltip of a Virtual Field on a window.

The parameter list for this call is:

in integer IN_Prod_ID;

inout reference INOUT_Reference;

in string IN_Field_Tooltip;

out integer OUT_Status;

An example script is:

local integer l_status;

call with name "MBS_Set_Virtual_Field_Tooltip" in dictionary 5261,

Dictionary, <Reference>, "Tooltip", l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

C H A P T E R 9 H E L P E R F U N C T I O N S

750 G P P O W E R T O O L S

MBS_Ask_Password

This call is used to ask for a Form Control Password .

The parameter list for this call is:

in string IN_PasswordID;

out boolean OUT_Success;

out integer OUT_Attempts;

An example script is:

local boolean l_success;

local integer l_attempts;

call with name "MBS_Ask_Password" in dictionary 5261,

"<PasswordID>", l_success, l_attempts;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 751

MBS_Control_Start

This call is used to start a Form Control ID for specified form in a
dictionary.

The parameter list for this call is:

in string IN_ControlID;

in integer IN_DictID;

in string IN_Form;

in boolean IN_Modified;

An example script is:

call with name "MBS_Control_Start" in dictionary 5261, "XXXX", 0

{Dict}, "<Form Name>", false {modifiied};

C H A P T E R 9 H E L P E R F U N C T I O N S

752 G P P O W E R T O O L S

MBS_Control_Stop

This call is used to stop a Form Control ID for specified form in a
dictionary.

The parameter list for this call is:

in string IN_ControlID;

in integer IN_DictID;

in string IN_Form;

An example script is:

call with name "MBS_Control_Stop" in dictionary 5261, "XXXX", 0

{Dict}, "<Form Name>";

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 753

MBS_Control_Stop_All

This call is used to stop a Form Control ID for all forms.

The parameter list for this call is:

in string IN_ControlID;

An example script is:

call with name "MBS_Control_Stop_All" in dictionary 5261, "XXXX";

C H A P T E R 9 H E L P E R F U N C T I O N S

754 G P P O W E R T O O L S

MBS_Control_Update_Dialog

This call is used to programmatically change the Warning used for the
currently active Form Control ID and Rule.

The parameter list for this call is:

in string IN_Warning;

in integer IN_Mode; { 1 = info, 2 = warning, 3 = error, 4 = debug }

An example script is:

call with name "MBS_Control_Update_Dialog" in dictionary 5261,

"Message", Mode {1 = info, 2 = warning, 3 = error, 4 = debug};

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 755

MBS_Control_Update_Expression

This call is used to programmatically change the Expression used for the
currently active Form Control ID and Rule.

The parameter list for this call is:

in string IN_Expression;

An example script is:

call with name "MBS_Control_Update_Expression" in dictionary 5261,

"Expression";

C H A P T E R 9 H E L P E R F U N C T I O N S

756 G P P O W E R T O O L S

MBS_Get_First_Window

This call is used to get the first or main window on a form. It can be used
with Form Control conditional scripts when needing to work with fields
on the main window rather than the current window.

The parameter list for this call is:

in integer IN_Dict;

in string IN_Form;

out string OUT_Window;

An example script is:

local string l_window;

call with name "MBS_Get_First_Window", 0 { Dictionary } , "<Form>" {

Form }, l_window;

 C H A P T E R 9 H E L P E R F U N C T I O N S

 G P P O W E R T O O L S 757

MBS_Check_Resource_Exists

This call is used to check if a form, window or field resources actually
exists. It can be used with Form Control conditional scripts when needing
to work with fields other than than the current field.

The parameter list for this call is:

in integer IN_Dict;

in string IN_Form;

in string IN_Window;

in string IN_Field;

in boolean IN_Modified;

out integer OUT_Status;

An example script is:

local integer l_status;

call with name "MBS_Check_Resource_Exists" in dictionary 5261, 0

{Dict}, "<Form>", "<Window>", "<Field>", false {Modified}, l_status;

if l_status <> OKAY then

 warning str(l_status);

end if;

758 G P P O W E R T O O L S

 Chapter 10: RW Functions

GP Power Tools has support for six generic Report Writer functions in the
core Dynamics.dic dictionary which can be used in the Report Writer with
any report as a user defined function in a calculated field.

To use the functions with GP Power Tools, the first two parameters passed
in for each of the functions will be the Dictionary ID for GP Power Tools
(5261) and the Script ID of a Runtime Execute Setup script.

The Dexterity sanScript code contained in the Script ID will then be
executed allowing for the development of custom Report Writer functions.
Use the Select Custom Script Purpose option on the Runtime Execute
Setup window to automatically add the template code to handle the
parameter passing into and out of the script using the MBS_Param_Get
and MBS_Param_Set helper functions.

Below are the details of the RW Functions available from the system series:

• rw_ReportStart
• rw_ReportEnd
• rw_TableHeaderString (Supports additional functions)
• rw_TableHeaderCurrency
• rw_TableLineString
• rw_TableLineCurrency

• rw_ReportStart Old Method
• rw_ReportEnd Old Method
• rw_TableHeaderString Old Method
• rw_TableHeaderCurrency Old Method
• rw_TableLineString Old Method
• rw_TableLineCurrency Old Method

• RW_GetUserMasterAdditionalData (GP Power Tools)
• RW_GetUserMasterAdditionalPrompts (GP Power Tools)

You can use these functions to capture information off a report and store it
in the log using the MBS_Auto_Log helper function. For example: you can
capture the values of legends, calculated fields, report fields or values
from any of the attached tables.

While the Report Writer Functions were designed to work with the report start
and end events and with a header and line type document such as seen in Sales
Order Processing, you can use the functions and parameters as desired to achieve
the results required.

More detail on these functions is available from Knowledge Base (KB)
article 888884:

http://support.microsoft.com/kb/888884

http://support.microsoft.com/kb/888884

 C H A P T E R 1 0 R W F U N C T I O N S

 G P P O W E R T O O L S 759

rw_ReportStart

This report writer function can be used in the Report Writer as a user
defined function in a calculated field. The first two parameters passed in
need to be the Dictionary ID for GP Power Tools (5261) and the Script ID
of the Runtime Execute Setup script to be executed.

The returned value for this report writer function is a string and the input
parameter list for this report writer function is:

in integer dict_id; {Dictionary ID}

in string script_id; {Script ID}

An example of how it would be called from the Report Writer for a
calculated field with a Result Type of string is:

FUNCTION_SCRIPT(rw_ReportStart 5261 "Script ID")

The template Runtime Execute Setup script added by the Helper Function
Assistant window is:

local string MBS_Status;

MBS_Status = "";

{ Add your code below here }

{ Add your code above here }

call with name "MBS_Memory_Set_String" in dictionary 5261,

"RW_RS_ReportStart", MBS_Status;

C H A P T E R 1 0 R W F U N C T I O N S

760 G P P O W E R T O O L S

rw_ReportEnd

This report writer function can be used in the Report Writer as a user
defined function in a calculated field. The first two parameters passed in
need to be the Dictionary ID for GP Power Tools (5261) and the Script ID
of the Runtime Execute Setup script to be executed.

The returned value for this report writer function is a string and the input
parameter list for this report writer function is:

in integer dict_id; {Dictionary ID}

in string script_id; {Script ID}

An example of how it would be called from the Report Writer for a
calculated field with a Result Type of string is:

FUNCTION_SCRIPT(rw_ReportEnd 5261 "Script ID")

The template Runtime Execute Setup script added by the Helper Function
Assistant window is:

local string MBS_Status;

MBS_Status = "";

{ Add your code below here }

{ Add your code above here }

call with name "MBS_Memory_Set_String" in dictionary 5261,

"RW_RE_ReportEnd", MBS_Status;

 C H A P T E R 1 0 R W F U N C T I O N S

 G P P O W E R T O O L S 761

rw_TableHeaderString

This report writer function can be used in the Report Writer as a user
defined function in a calculated field. The first two parameters passed in
need to be the Dictionary ID for GP Power Tools (5261) and the Script ID
of the Runtime Execute Setup script to be executed.

The returned value for this report writer function is a string and the input
parameter list for this report writer function is:

in integer dict_id; {Dictionary ID}

in string script_id; {Script ID}

in string sNumber; {control field 1}

in integer sType; {control field 2}

in integer iControl; {which piece of data to return}

An example of how it would be called from the Report Writer for a
calculated field with a Result Type of string is:

FUNCTION_SCRIPT(rw_TableHeaderString 5261 "Script ID"

SOP_HDR_WORK.SOP Number SOP_HDR_WORK.SOP Type 1)

The template Runtime Execute Setup script added by the Helper Function
Assistant window is:

local string MBS_TableHeaderString;

local string MBS_Number;

local integer MBS_Type;

local integer MBS_Control;

call with name "MBS_Memory_Get_String" in dictionary 5261,

"RW_THS_Number", MBS_Number;

call with name "MBS_Memory_Get_Long" in dictionary 5261,

"RW_THS_Type", MBS_Type;

call with name "MBS_Memory_Get_Long" in dictionary 5261,

"RW_THS_Control", MBS_Control;

MBS_TableHeaderString = "";

{ Add your code below here }

{ Add your code above here }

call with name "MBS_Memory_Set_String" in dictionary 5261,

"RW_THS_TableHeaderString", MBS_TableHeaderString;

The rw_TableHeaderString function supports additional methods for the
RW_GetUserMasterAdditionalData and RW_GetUserMasterAdditionalPrompts
report writer functions using a dictionary value of -5261 and the IDs of "User"
and "UserPrompt" respectively.

C H A P T E R 1 0 R W F U N C T I O N S

762 G P P O W E R T O O L S

rw_TableHeaderCurrency

This report writer function can be used in the Report Writer as a user
defined function in a calculated field. The first two parameters passed in
need to be the Dictionary ID for GP Power Tools (5261) and the Script ID
of the Runtime Execute Setup script to be executed.

The returned value for this report writer function is a currency and the
input parameter list for this report writer function is:

in integer dict_id; {Dictionary ID}

in string script_id; {Script ID}

in string sNumber; {control field 1}

in integer sType; {control field 2}

in integer iControl; {which piece of data to return}

An example of how it would be called from the Report Writer for a
calculated field with a Result Type of currency is:

FUNCTION_SCRIPT(rw_TableHeaderCurrency 5261 "Script ID"

SOP_HDR_WORK.SOP Number SOP_HDR_WORK.SOP Type 1)

The template Runtime Execute Setup script added by the Helper Function
Assistant window is:

local currency MBS_TableHeaderCurrency;

local string MBS_Number;

local integer MBS_Type;

local integer MBS_Control;

call with name "MBS_Memory_Get_String" in dictionary 5261,

"RW_THC_Number", MBS_Number;

call with name "MBS_Memory_Get_Long" in dictionary 5261,

"RW_THC_Type", MBS_Type;

call with name "MBS_Memory_Get_Long" in dictionary 5261,

"RW_THC_Control", MBS_Control;

MBS_TableHeaderCurrency = 0.0000;

{ Add your code below here }

{ Add your code above here }

call with name "MBS_Memory_Set_Currency" in dictionary 5261,

"RW_THC_TableHeaderCurrency", MBS_TableHeaderCurrency;

 C H A P T E R 1 0 R W F U N C T I O N S

 G P P O W E R T O O L S 763

rw_TableLineString

This report writer function can be used in the Report Writer as a user
defined function in a calculated field. The first two parameters passed in
need to be the Dictionary ID for GP Power Tools (5261) and the Script ID
of the Runtime Execute Setup script to be executed.

The returned value for this report writer function is a string and the input
parameter list for this report writer function is:

in integer dict_id; {Dictionary ID}

in string script_id; {Script ID}

in string sNumber; {control field 1}

in integer sType; {control field 2}

in currency cSequenceOne; {control field 3}

in currency cSequenceTwo; {control field 4}

in integer iControl; {which piece of data to return}

To use the rw_TableLineString report writer function we need to be able to pass
the two sequence fields as currency data type. So to use the Sales Order
Processing fields SOP_LINE_WORK.Line Item Sequence and
SOP_LINE_WORK.Component Sequence, we will need to create two calculated
fields to convert them from a long integer to a currency data type.

Calculated Field (C) Line Item Sequence is defined as result type currency
with the expression of SOP_LINE_WORK.Line Item Sequence * 1.00000.

Calculated Field (C) Component Sequence is defined as result type
currency with the expression of SOP_LINE_WORK.Component Sequence *
1.00000.

An example of how it would be called from the Report Writer for a
calculated field with a Result Type of string is:

FUNCTION_SCRIPT(rw_TableLineString 5261 "Script ID"

SOP_LINE_WORK.SOP Number SOP_LINE_WORK.SOP Type (C) Line Item

Sequence (C) Component Sequence 1)

C H A P T E R 1 0 R W F U N C T I O N S

764 G P P O W E R T O O L S

The template Runtime Execute Setup script added by the Helper Function
Assistant window is:

local string MBS_TableLineString;

local string MBS_Number;

local integer MBS_Type;

local currency MBS_SequenceOne;

local currency MBS_SequenceTwo;

local integer MBS_Control;

call with name "MBS_Memory_Get_String" in dictionary 5261,

"RW_TLS_Number", MBS_Number;

call with name "MBS_Memory_Get_Long" in dictionary 5261,

"RW_TLS_Type", MBS_Type;

call with name "MBS_Memory_Get_Currency" in dictionary 5261,

"RW_TLS_SequenceOne", MBS_SequenceOne;

call with name "MBS_Memory_Get_Currency" in dictionary 5261,

"RW_TLS_SequenceTwo", MBS_SequenceTwo;

call with name "MBS_Memory_Get_Long" in dictionary 5261,

"RW_TLS_Control", MBS_Control;

MBS_TableLineString = "";

{ Add your code below here }

{ Add your code above here }

call with name "MBS_Memory_Set_String" in dictionary 5261,

"RW_TLS_TableLineString", MBS_TableLineString;

 C H A P T E R 1 0 R W F U N C T I O N S

 G P P O W E R T O O L S 765

rw_TableLineCurrency

This report writer function can be used in the Report Writer as a user
defined function in a calculated field. The first two parameters passed in
need to be the Dictionary ID for GP Power Tools (5261) and the Script ID
of the Runtime Execute Setup script to be executed.

The returned value for this report writer function is a currency and the
input parameter list for this report writer function is:

in integer dict_id; {Dictionary ID}

in string script_id; {Script ID}

in string sNumber; {control field 1}

in integer sType; {control field 2}

in currency cSequenceOne; {control field 3}

in currency cSequenceTwo; {control field 4}

in integer iControl; {which piece of data to return}

To use the rw_TableLineCurrency report writer function we need to be able to
pass the two sequence fields as currency data type. So to use the Sales Order
Processing fields SOP_LINE_WORK.Line Item Sequence and
SOP_LINE_WORK.Component Sequence, we will need to create two calculated
fields to convert them from a long integer to a currency data type.

Calculated Field (C) Line Item Sequence is defined as result type currency
with the expression of SOP_LINE_WORK.Line Item Sequence * 1.00000.

Calculated Field (C) Component Sequence is defined as result type
currency with the expression of SOP_LINE_WORK.Component Sequence *
1.00000.

An example of how it would be called from the Report Writer for a
calculated field with a Result Type of currency is:

FUNCTION_SCRIPT(rw_TableLineCurrency 5261 "Script ID"

SOP_LINE_WORK.SOP Number SOP_LINE_WORK.SOP Type (C) Line Item

Sequence (C) Component Sequence 1)

C H A P T E R 1 0 R W F U N C T I O N S

766 G P P O W E R T O O L S

The template Runtime Execute Setup script added by the Helper Function
Assistant window is:

local currency MBS_TableLineCurrency;

local string MBS_Number;

local integer MBS_Type;

local currency MBS_SequenceOne;

local currency MBS_SequenceTwo;

local integer MBS_Control;

call with name "MBS_Memory_Get_String" in dictionary 5261,

"RW_TLC_Number", MBS_Number;

call with name "MBS_Memory_Get_Long" in dictionary 5261,

"RW_TLC_Type", MBS_Type;

call with name "MBS_Memory_Get_Currency" in dictionary 5261,

"RW_TLC_SequenceOne", MBS_SequenceOne;

call with name "MBS_Memory_Get_Currency" in dictionary 5261,

"RW_TLC_SequenceTwo", MBS_SequenceTwo;

call with name "MBS_Memory_Get_Long" in dictionary 5261,

"RW_TLC_Control", MBS_Control;

MBS_TableLineCurrency = 0.00000;

{ Add your code below here }

{ Add your code above here }

call with name "MBS_Memory_Set_Currency" in dictionary 5261,

"RW_TLC_TableLineCurrency", MBS_TableLineCurrency;

 C H A P T E R 1 0 R W F U N C T I O N S

 G P P O W E R T O O L S 767

rw_ReportStart Old Method

This report writer function can be used in the Report Writer as a user
defined function in a calculated field. The first two parameters passed in
need to be the Dictionary ID for GP Power Tools (5261) and the Script ID
of the Runtime Execute Setup script to be executed.

The returned value for this report writer function is a string and the input
parameter list for this report writer function is:

in integer dict_id; {Dictionary ID}

in string script_id; {Script ID}

An example of how it would be called from the Report Writer for a
calculated field with a Result Type of string is:

FUNCTION_SCRIPT(rw_ReportStart 5261 "Script ID")

The template Runtime Execute Setup script added by the Helper Function
Assistant window is:

local string MBS_Status;

MBS_Status = "";

{ Add your code below here }

{ Add your code above here }

call with name "MBS_Param_Set" in dictionary 5261, "ReportStart",

MBS_Status;

C H A P T E R 1 0 R W F U N C T I O N S

768 G P P O W E R T O O L S

rw_ReportEnd Old Method

This report writer function can be used in the Report Writer as a user
defined function in a calculated field. The first two parameters passed in
need to be the Dictionary ID for GP Power Tools (5261) and the Script ID
of the Runtime Execute Setup script to be executed.

The returned value for this report writer function is a string and the input
parameter list for this report writer function is:

in integer dict_id; {Dictionary ID}

in string script_id; {Script ID}

An example of how it would be called from the Report Writer for a
calculated field with a Result Type of string is:

FUNCTION_SCRIPT(rw_ReportEnd 5261 "Script ID")

The template Runtime Execute Setup script added by the Helper Function
Assistant window is:

local string MBS_Status;

MBS_Status = "";

{ Add your code below here }

{ Add your code above here }

call with name "MBS_Param_Set" in dictionary 5261, "ReportEnd",

MBS_Status;

 C H A P T E R 1 0 R W F U N C T I O N S

 G P P O W E R T O O L S 769

rw_TableHeaderString Old Method

This report writer function can be used in the Report Writer as a user
defined function in a calculated field. The first two parameters passed in
need to be the Dictionary ID for GP Power Tools (5261) and the Script ID
of the Runtime Execute Setup script to be executed.

The returned value for this report writer function is a string and the input
parameter list for this report writer function is:

in integer dict_id; {Dictionary ID}

in string script_id; {Script ID}

in string sNumber; {control field 1}

in integer sType; {control field 2}

in integer iControl; {which piece of data to return}

An example of how it would be called from the Report Writer for a
calculated field with a Result Type of string is:

FUNCTION_SCRIPT(rw_TableHeaderString 5261 "Script ID"

SOP_HDR_WORK.SOP Number SOP_HDR_WORK.SOP Type 1)

The template Runtime Execute Setup script added by the Helper Function
Assistant window is:

local string MBS_TableHeaderString;

local string MBS_Number;

local integer MBS_Type;

local integer MBS_Control;

local string MBS_String;

call with name "MBS_Param_Get" in dictionary 5261, "Number",

MBS_Number;

call with name "MBS_Param_Get" in dictionary 5261, "Type",

MBS_String;

MBS_Type = integer(value(MBS_String));

call with name "MBS_Param_Get" in dictionary 5261, "Control",

MBS_String;

MBS_Control = integer(value(MBS_String));

MBS_TableHeaderString = "";

{ Add your code below here }

{ Add your code above here }

call with name "MBS_Param_Set" in dictionary 5261,

"TableHeaderString", MBS_TableHeaderString;

C H A P T E R 1 0 R W F U N C T I O N S

770 G P P O W E R T O O L S

rw_TableHeaderCurrency Old Method

This report writer function can be used in the Report Writer as a user
defined function in a calculated field. The first two parameters passed in
need to be the Dictionary ID for GP Power Tools (5261) and the Script ID
of the Runtime Execute Setup script to be executed.

The returned value for this report writer function is a currency and the
input parameter list for this report writer function is:

in integer dict_id; {Dictionary ID}

in string script_id; {Script ID}

in string sNumber; {control field 1}

in integer sType; {control field 2}

in integer iControl; {which piece of data to return}

An example of how it would be called from the Report Writer for a
calculated field with a Result Type of currency is:

FUNCTION_SCRIPT(rw_TableHeaderCurrency 5261 "Script ID"

SOP_HDR_WORK.SOP Number SOP_HDR_WORK.SOP Type 1)

The template Runtime Execute Setup script added by the Helper Function
Assistant window is:

local currency MBS_TableHeaderCurrency;

local string MBS_Number;

local integer MBS_Type;

local integer MBS_Control;

local string MBS_String;

call with name "MBS_Param_Get" in dictionary 5261, "Number",

MBS_Number;

call with name "MBS_Param_Get" in dictionary 5261, "Type",

MBS_String;

MBS_Type = integer(value(MBS_String));

call with name "MBS_Param_Get" in dictionary 5261, "Control",

MBS_String;

MBS_Control = integer(value(MBS_String));

MBS_TableHeaderCurrency = 0.0000;

{ Add your code below here }

{ Add your code above here }

call with name "MBS_Param_Set" in dictionary 5261,

"TableHeaderCurrency", str(MBS_TableHeaderCurrency);

 C H A P T E R 1 0 R W F U N C T I O N S

 G P P O W E R T O O L S 771

rw_TableLineString Old Method

This report writer function can be used in the Report Writer as a user
defined function in a calculated field. The first two parameters passed in
need to be the Dictionary ID for GP Power Tools (5261) and the Script ID
of the Runtime Execute Setup script to be executed.

The returned value for this report writer function is a string and the input
parameter list for this report writer function is:

in integer dict_id; {Dictionary ID}

in string script_id; {Script ID}

in string sNumber; {control field 1}

in integer sType; {control field 2}

in currency cSequenceOne; {control field 3}

in currency cSequenceTwo; {control field 4}

in integer iControl; {which piece of data to return}

To use the rw_TableLineString report writer function we need to be able to pass
the two sequence fields as currency data type. So to use the Sales Order
Processing fields SOP_LINE_WORK.Line Item Sequence and
SOP_LINE_WORK.Component Sequence, we will need to create two calculated
fields to convert them from a long integer to a currency data type.

Calculated Field (C) Line Item Sequence is defined as result type currency
with the expression of SOP_LINE_WORK.Line Item Sequence * 1.00000.

Calculated Field (C) Component Sequence is defined as result type
currency with the expression of SOP_LINE_WORK.Component Sequence *
1.00000.

An example of how it would be called from the Report Writer for a
calculated field with a Result Type of string is:

FUNCTION_SCRIPT(rw_TableLineString 5261 "Script ID"

SOP_LINE_WORK.SOP Number SOP_LINE_WORK.SOP Type (C) Line Item

Sequence (C) Component Sequence 1)

C H A P T E R 1 0 R W F U N C T I O N S

772 G P P O W E R T O O L S

The template Runtime Execute Setup script added by the Helper Function
Assistant window is:

local string MBS_TableLineString;

local string MBS_Number;

local integer MBS_Type;

local currency MBS_SequenceOne;

local currency MBS_SequenceTwo;

local integer MBS_Control;

local string MBS_String;

call with name "MBS_Param_Get" in dictionary 5261, "Number",

MBS_Number;

call with name "MBS_Param_Get" in dictionary 5261, "Type",

MBS_String;

MBS_Type = integer(value(MBS_String));

call with name "MBS_Param_Get" in dictionary 5261, "SequenceOne",

MBS_String;

MBS_SequenceOne = currency(value(MBS_String));

call with name "MBS_Param_Get" in dictionary 5261, "SequenceTwo",

MBS_String;

MBS_SequenceTwo = currency(value(MBS_String));

call with name "MBS_Param_Get" in dictionary 5261, "Control",

MBS_String;

MBS_Control = integer(value(MBS_String));

MBS_TableLineString = "";

{ Add your code below here }

{ Add your code above here }

call with name "MBS_Param_Set" in dictionary 5261,

"TableLineString", MBS_TableLineString;

 C H A P T E R 1 0 R W F U N C T I O N S

 G P P O W E R T O O L S 773

rw_TableLineCurrency Old Method

This report writer function can be used in the Report Writer as a user
defined function in a calculated field. The first two parameters passed in
need to be the Dictionary ID for GP Power Tools (5261) and the Script ID
of the Runtime Execute Setup script to be executed.

The returned value for this report writer function is a currency and the
input parameter list for this report writer function is:

in integer dict_id; {Dictionary ID}

in string script_id; {Script ID}

in string sNumber; {control field 1}

in integer sType; {control field 2}

in currency cSequenceOne; {control field 3}

in currency cSequenceTwo; {control field 4}

in integer iControl; {which piece of data to return}

To use the rw_TableLineCurrency report writer function we need to be able to
pass the two sequence fields as currency data type. So to use the Sales Order
Processing fields SOP_LINE_WORK.Line Item Sequence and
SOP_LINE_WORK.Component Sequence, we will need to create two calculated
fields to convert them from a long integer to a currency data type.

Calculated Field (C) Line Item Sequence is defined as result type currency
with the expression of SOP_LINE_WORK.Line Item Sequence * 1.00000.

Calculated Field (C) Component Sequence is defined as result type
currency with the expression of SOP_LINE_WORK.Component Sequence *
1.00000.

An example of how it would be called from the Report Writer for a
calculated field with a Result Type of currency is:

FUNCTION_SCRIPT(rw_TableLineCurrency 5261 "Script ID"

SOP_LINE_WORK.SOP Number SOP_LINE_WORK.SOP Type (C) Line Item

Sequence (C) Component Sequence 1)

C H A P T E R 1 0 R W F U N C T I O N S

774 G P P O W E R T O O L S

The template Runtime Execute Setup script added by the Helper Function
Assistant window is:

local currency MBS_TableLineCurrency;

local string MBS_Number;

local integer MBS_Type;

local currency MBS_SequenceOne;

local currency MBS_SequenceTwo;

local integer MBS_Control;

local string MBS_String;

call with name "MBS_Param_Get" in dictionary 5261, "Number",

MBS_Number;

call with name "MBS_Param_Get" in dictionary 5261, "Type",

MBS_String;

MBS_Type = integer(value(MBS_String));

call with name "MBS_Param_Get" in dictionary 5261, "SequenceOne",

MBS_String;

MBS_SequenceOne = currency(value(MBS_String));

call with name "MBS_Param_Get" in dictionary 5261, "SequenceTwo",

MBS_String;

MBS_SequenceTwo = currency(value(MBS_String));

call with name "MBS_Param_Get" in dictionary 5261, "Control",

MBS_String;

MBS_Control = integer(value(MBS_String));

MBS_TableLineCurrency = 0.00000;

{ Add your code below here }

{ Add your code above here }

call with name "MBS_Param_Set" in dictionary 5261,

"TableLineCurrency", str(MBS_TableLineCurrency);

 C H A P T E R 1 0 R W F U N C T I O N S

 G P P O W E R T O O L S 775

RW_GetUserMasterAdditionalData

This report writer function can be used in the Report Writer as a user
defined function in a calculated field to retrieve data stored in the User
Setup Additional Information window.

The returned value for this report writer function is a string and the input
parameter list for this report writer function is:

in 'User ID' IN_UserID; {User ID variable}

in integer IN_Position; {which field to return: Field 1 to 20}

An example of how it would be called from the Report Writer for a
calculated field with a Result Type of string is:

FUNCTION_SCRIPT(RW_GetUserMasterAdditionalData SY_Users_MSTR.User

ID 1)

However, as this report writer function is in the GP Power Tools
dictionary, it cannot be used from reports in other dictionaries. To get
around this limitation the functionality has also been added to the
rw_TableHeaderString report writer function using a negative Dictionary
ID.

The returned value for this report writer function is a string and the input
parameter list for this report writer function is:

in integer dict_id; {Negative Dictionary ID: -5261}

in string IN_Function; {String constant: "User"}

in string IN_UserID; {User ID variable}

in integer IN_NotUsed; {Integer constant: 0}

in integer IN_Position; {which field to return: Field 1 to 20}

An example of how it would be called from the Report Writer for a
calculated field with a Result Type of string is:

FUNCTION_SCRIPT(rw_TableHeaderString -5261 "User"

SY_Users_MSTR.User ID 0 1)

C H A P T E R 1 0 R W F U N C T I O N S

776 G P P O W E R T O O L S

RW_GetUserMasterAdditionalPrompts

This report writer function can be used in the Report Writer as a user
defined function in a calculated field to retrieve prompts used for the User
defined fields in the User Setup Additional Information window.

The returned value for this report writer function is a string and the input
parameter list for this report writer function is:

in integer IN_Position; {which field to return: Field 1 to 6}

An example of how it would be called from the Report Writer for a
calculated field with a Result Type of string is:

FUNCTION_SCRIPT(RW_GetUserMasterAdditionalPrompts 1)

However, as this report writer function is in the GP Power Tools
dictionary, it cannot be used from reports in other dictionaries. To get
around this limitation the functionality has also been added to the
rw_TableHeaderString report writer function using a negative Dictionary
ID.

The returned value for this report writer function is a string and the input
parameter list for this report writer function is:

in integer dict_id; {Negative Dictionary ID: -5261}

in string IN_Function; {String constant: "UserPrompt"}

in string IN_UserID; {String constant: ""}

in integer IN_NotUsed; {Integer constant: 0}

in integer IN_Position; {which field to return: Field 1 to 6}

An example of how it would be called from the Report Writer for a
calculated field with a Result Type of string is:

FUNCTION_SCRIPT(rw_TableHeaderString -5261 "UserPrompt" "" 0

1)

 G P P O W E R T O O L S 777

 Chapter 11: Service Procedures

GP Power Tools has five Service Procedures which can be called to
perform custom actions within Microsoft Dynamics GP. These Service
Procedures can be called from Dexterity, Visual Studio (Visual C# or
Visual Basic.Net) or from Web Services.

To use the Service Procedures with GP Power Tools, the first parameter
passed in will be the Script ID of a Runtime Execute Setup script.

The Dexterity sanScript code contained in the Script ID will then be
executed allowing for the development of custom Service Procedures. Use
the Select Custom Script Purpose option on the Runtime Execute Setup
window to automatically add the template code to handle the parameter
passing into and out of the script using listbox fields or collections of
strings.

Due to limitations in Dexterity, the maximum size of data passed into and out of
GP Power Tools Service Procedures is limited to the maximum size of a text
variable being 32K (32767 bytes).

Below are the details of the Service Procedures system series:

• ServiceCreateCustom
• ServiceDeleteCustom
• ServiceGetCustom
• ServiceUpdateCustom
• ServicePostCustom

C H A P T E R 1 1 S E R V I C E P R O C E D U R E S

778 G P P O W E R T O O L S

ServiceCreateCustom

This service procedure can be used to make custom “Create” code which
can be called as a web service or from Visual Studio or Dexterity. The first
parameter passed in needs to be the Script ID of the Runtime Execute
Setup script to be executed.

Web Service
Details for calling the service procedure as a web service are:

Name: ServiceCreateCustom

URI Template: /Custom/Create({ScriptID})

Header Value: GP-Custom-Action=Post

Request Type: Custom (POST)

Parameters: ScriptID (String) Runtime Execute Setup Script ID

Payload: List<InStringList> (List<String>) Passed in data as collection of strings

Returns: Status (Short) Returned Status Code

URL Example:
 https://domain.com/gpservice/Tenants(DefaultTenant)/Companies(Fabrikam,%20Inc.)/G

PPowerTools/ Custom/Create({ScriptID})

Visual Studio Call
Details for calling the service procedure using Visual Studio are:

Name: ServiceCreateCustom

Qualified Name: GPPowerTools.Procedures.ServiceCreateCustom

Parameters: ScriptID (String) Runtime Execute Setup Script ID
 List<InStringList> (List<String>) Passed in data as collection of strings
 Status (out Short) Returned Status Code

Invoke Example:
 Application.GPPowerTools.Procedures.ServiceCreateCustom.Invoke(ScriptID, InStringList,

Status;)

 C H A P T E R 1 1 S E R V I C E P R O C E D U R E S

 G P P O W E R T O O L S 779

Dexterity Call
Details for calling the service procedure using Dexterity are:

Name: ServiceCreateCustom

Parameters: using System.Collections;
 using System.Collections.Generic;

 in string ScriptID;
 in List<System.String> InStringList;
 out integer Status;

Call Example:
 call with name "ServiceCreateCustom" in dictionary 5261, ScriptID, InStringList, Status;

C H A P T E R 1 1 S E R V I C E P R O C E D U R E S

780 G P P O W E R T O O L S

ServiceDeleteCustom

This service procedure can be used to make custom “Delete” code which
can be called as a web service or from Visual Studio or Dexterity. The first
parameter passed in needs to be the Script ID of the Runtime Execute
Setup script to be executed.

Web Service
Details for calling the service procedure as a web service are:

Name: ServiceDeleteCustom

URI Template: /Custom/Delete({ScriptID})

Header Value: GP-Custom-Action=Post

Request Type: Custom (POST)

Parameters: ScriptID (String) Runtime Execute Setup Script ID

Payload: List<InStringList> (List<String>) Passed in data as collection of strings

Returns: Status (Short) Returned Status Code

URL Example:
 https://domain.com/gpservice/Tenants(DefaultTenant)/Companies(Fabrikam,%20Inc.)/G

PPowerTools/ Custom/Delete({ScriptID})

Visual Studio Call
Details for calling the service procedure using Visual Studio are:

Name: ServiceDeleteCustom

Qualified Name: GPPowerTools.Procedures.ServiceDeleteCustom

Parameters: ScriptID (String) Runtime Execute Setup Script ID
 List<InStringList> (List<String>) Passed in data as collection of strings
 Status (out Short) Returned Status Code

Invoke Example:
 Application.GPPowerTools.Procedures.ServiceDeleteCustom.Invoke(ScriptID, InStringList,

Status;)

 C H A P T E R 1 1 S E R V I C E P R O C E D U R E S

 G P P O W E R T O O L S 781

Dexterity Call
Details for calling the service procedure using Dexterity are:

Name: ServiceDeleteCustom

Parameters: using System.Collections;
 using System.Collections.Generic;

 in string ScriptID;
 in List<System.String> InStringList;
 out integer Status;

Call Example:
 call with name "ServiceDeleteCustom" in dictionary 5261, ScriptID, InStringList, Status;

C H A P T E R 1 1 S E R V I C E P R O C E D U R E S

782 G P P O W E R T O O L S

ServiceGetCustom

This service procedure can be used to make custom “Get” code which can
be called as a web service or from Visual Studio or Dexterity. The first
parameter passed in needs to be the Script ID of the Runtime Execute
Setup script to be executed.

Web Service
Details for calling the service procedure as a web service are:

Name: ServiceGetCustom

URI Template: /Custom/Get({ScriptID})

Header Value: GP-Custom-Action=Post

Request Type: Custom (POST)

Parameters: ScriptID (String) Runtime Execute Setup Script ID

Payload: List<InStringList> (List<String>) Passed in data as collection of strings

Returns: List<OutStringList> (List<String>) Passed out data as collection of strings
 Status (Short) Returned Status Code

URL Example:
 https://domain.com/gpservice/Tenants(DefaultTenant)/Companies(Fabrikam,%20Inc.)/G

PPowerTools/ Custom/Get({ScriptID})

Visual Studio Call
Details for calling the service procedure using Visual Studio are:

Name: ServiceGetCustom

Qualified Name: GPPowerTools.Procedures.ServiceGetCustom

Parameters: ScriptID (String) Runtime Execute Setup Script ID
 List<InStringList> (List<String>) Passed in data as collection of strings
 List<OutStringList> (List<String>) Passed out data as collection of strings
 Status (out Short) Returned Status Code

Invoke Example:
 Application.GPPowerTools.Procedures.ServiceGetCustom.Invoke(ScriptID, InStringList,

OutStringList, Status;)

 C H A P T E R 1 1 S E R V I C E P R O C E D U R E S

 G P P O W E R T O O L S 783

Dexterity Call
Details for calling the service procedure using Dexterity are:

Name: ServiceGetCustom

Parameters: using System.Collections;
 using System.Collections.Generic;

 in string ScriptID;
 in List<System.String> InStringList;
 out List<System.String> OutStringList;
 out integer Status;

Call Example:
 call with name "ServiceGetCustom" in dictionary 5261, ScriptID, InStringList,

OutStringList, Status;

C H A P T E R 1 1 S E R V I C E P R O C E D U R E S

784 G P P O W E R T O O L S

ServiceUpdateCustom

This service procedure can be used to make custom “Update” code which
can be called as a web service or from Visual Studio or Dexterity. The first
parameter passed in needs to be the Script ID of the Runtime Execute
Setup script to be executed.

Web Service
Details for calling the service procedure as a web service are:

Name: ServiceUpdateCustom

URI Template: /Custom/Update({ScriptID})

Header Value: GP-Custom-Action=Post

Request Type: Custom (POST)

Parameters: ScriptID (String) Runtime Execute Setup Script ID

Payload: List<InStringList> (List<String>) Passed in data as collection of strings

Returns: Status (Short) Returned Status Code

URL Example:
 https://domain.com/gpservice/Tenants(DefaultTenant)/Companies(Fabrikam,%20Inc.)/G

PPowerTools/ Custom/Update({ScriptID})

Visual Studio Call
Details for calling the service procedure using Visual Studio are:

Name: ServiceUpdateCustom

Qualified Name: GPPowerTools.Procedures.ServiceUpdateCustom

Parameters: ScriptID (String) Runtime Execute Setup Script ID
 List<InStringList> (List<String>) Passed in data as collection of strings
 Status (out Short) Returned Status Code

Invoke Example:
 Application.GPPowerTools.Procedures.ServiceUpdateCustom.Invoke(ScriptID,

InStringList, Status;)

 C H A P T E R 1 1 S E R V I C E P R O C E D U R E S

 G P P O W E R T O O L S 785

Dexterity Call
Details for calling the service procedure using Dexterity are:

Name: ServiceUpdateCustom

Parameters: using System.Collections;
 using System.Collections.Generic;

 in string ScriptID;
 in List<System.String> InStringList;
 out integer Status;

Call Example:
 call with name "ServiceUpdateCustom" in dictionary 5261, ScriptID, InStringList, Status;

C H A P T E R 1 1 S E R V I C E P R O C E D U R E S

786 G P P O W E R T O O L S

ServicePostCustom

This service procedure can be used to make custom “Post” code which can
be called as a web service or from Visual Studio or Dexterity. The first
parameter passed in needs to be the Script ID of the Runtime Execute
Setup script to be executed.

Web Service
Details for calling the service procedure as a web service are:

Name: ServicePostCustom

URI Template: /Custom/Post({ScriptID})

Header Value: GP-Custom-Action=Post

Request Type: Custom (POST)

Parameters: ScriptID (String) Runtime Execute Setup Script ID

Payload: List<InStringList> (List<String>) Passed in data as collection of strings

Returns: List<OutStringList> (List<String>) Passed out data as collection of strings
 Status (Short) Returned Status Code

URL Example:
 https://domain.com/gpservice/Tenants(DefaultTenant)/Companies(Fabrikam,%20Inc.)/G

PPowerTools/ Custom/Post({ScriptID})?GP-Custom-Action=Post

Visual Studio Call
Details for calling the service procedure using Visual Studio are:

Name: ServicePostCustom

Qualified Name: GPPowerTools.Procedures.ServicePostCustom

Parameters: ScriptID (String) Runtime Execute Setup Script ID
 List<InStringList> (List<String>) Passed in data as collection of strings
 List<OutStringList> (List<String>) Passed out data as collection of strings
 Status (out Short) Returned Status Code

Invoke Example:
 Application.GPPowerTools.Procedures.ServicePostCustom.Invoke(ScriptID, InStringList,

OutStringList, Status;)

 C H A P T E R 1 1 S E R V I C E P R O C E D U R E S

 G P P O W E R T O O L S 787

Dexterity Call
Details for calling the service procedure using Dexterity are:

Name: ServicePostCustom

Parameters: using System.Collections;
 using System.Collections.Generic;

 in string ScriptID;
 in List<System.String> InStringList;
 out List<System.String> OutStringList;
 out integer Status;

Call Example:
 call with name "ServicePostCustom" in dictionary 5261, ScriptID, InStringList,

OutStringList, Status;

788 G P P O W E R T O O L S

 Chapter 12: Developer APIs

GP Power Tools has several external APIs available for use by other
developers.

Below are the details of the Developer APIs:

• MBS_Email_API
• MBS_WindowPositionCheck
• MBS_WindowPositionMemory
• MBS_WindowPositionMemoryResize
• MBS_CompanyColorGet
• MBS_CompanyColorGetRGB

 C H A P T E R 1 2 D E V E L O P E R A P I S

 G P P O W E R T O O L S 789

MBS_Email_API

This Developer API can be called from another Dexterity product to send
emails using the GP Power Tools email engine.

The parameter list for this call is:

in string IN_EmailFrom;

in string IN_EmailTo;

in string IN_EmailCC;

in string IN_EmailBCC;

in string IN_EmailSubject;

in text IN_EmailBody;

in text IN_EmailSignature;

in boolean IN_EmailSignatureDefault;

in text IN_EmailAttachments;

in boolean IN_EmailPreview;

in boolean IN_EmailAutoSend;

An example script is:

local string l_EmailFrom;

local string l_EmailTo;

local string l_EmailCC;

local string l_EmailBCC;

local string l_EmailSubject;

local text l_EmailBody;

local text l_EmailSignature;

local boolean l_EmailSignatureDefault;

local text l_EmailAttachments;

local boolean l_EmailPreview;

local boolean l_EmailAutoSend;

l_EmailTo = "email@domain.com";

l_EmailSubject = "Email API Test";

l_EmailBody = "This is a test of the Email API"+char(13);

l_EmailSignatureDefault = true;

l_EmailAttachments = l_EmailAttachments + "C:\Dex1000\Data\Dex.ini"+char(13);

l_EmailAttachments = l_EmailAttachments + "C:\Dex1100\Data\Dex.ini"+char(13);

l_EmailPreview = false;

l_EmailAutoSend = false;

call with name "MBS_Email_API" in dictionary 5261,

 l_EmailFrom, l_EmailTo, l_EmailCC, l_EmailBCC, l_EmailSubject,

 l_EmailBody, l_EmailSignature, l_EmailSignatureDefault,

 l_EmailAttachments, l_EmailPreview, l_EmailAutoSend;

C H A P T E R 1 2 D E V E L O P E R A P I S

790 G P P O W E R T O O L S

MBS_WindowPositionCheck

This Developer API can be called from another Dexterity product to
temporarily disable the Window Position Check which prevents windows
from opening outside of the visible desktop.

The parameter list for this call is:

in boolean IN_Active;

An example script is:

call with name "MBS_WindowPositionCheck" in dictionary 5261,

 false;

Remember to re-enable the feature with a second call after your code has
completed.

 C H A P T E R 1 2 D E V E L O P E R A P I S

 G P P O W E R T O O L S 791

MBS_WindowPositionMemory

This Developer API can be called from another Dexterity product to
temporarily disable the Window Position Memory feature which can
move windows to their previous location on the desktop.

The parameter list for this call is:

in boolean IN_Active;

An example script is:

call with name "MBS_WindowPositionMemory" in dictionary 5261,

 false;

Remember to re-enable the feature with a second call after your code has
completed.

C H A P T E R 1 2 D E V E L O P E R A P I S

792 G P P O W E R T O O L S

MBS_WindowPositionMemoryResize

This Developer API can be called from another Dexterity product to
temporarily disable the Window Position Memory Resizing feature which
can resize windows to their previous size on the desktop.

The parameter list for this call is:

in boolean IN_Active;

An example script is:

call with name "MBS_WindowPositionMemoryResize" in dictionary 5261,

 false;

Remember to re-enable the feature with a second call after your code has
completed.

 C H A P T E R 1 2 D E V E L O P E R A P I S

 G P P O W E R T O O L S 793

MBS_CompanyColorGet

This Developer API can be called from Visual Studio to obtain the RGB
color settings as per the current Company Color Theme in use. The color
settings can then be used to set the BackColor of Windows and Controls of
WinForms so that they match the colors of the Dexterity windows.

The parameter list for this call is:

out long OUT_ApplicationBackground;

out long OUT_WindowBackground;

out long OUT_WindowToolbar;

out long OUT_ButtonBackground;

out long OUT_ScrollLineBackground;

An example C# script is:

Microsoft.Dexterity.Applications.GpPowerTools.Functions.MbsCompanyCo

lorGetRgb.Invoke(out ApplicationBackground, out WindowBackground,

out WindowToolbar, out FieldBackground,out ScrollLineBackground);

if (WindowBackground > 0) {

 form.BackColor = Color.FromArgb(WindowBackground);

}

Primarily the Window Background (Mode 2) and Field Background (Mode
4) can be used for Field colors. Pushbuttons should use (253, 253, 253) for
their color to match Dexterity windows.

C H A P T E R 1 2 D E V E L O P E R A P I S

794 G P P O W E R T O O L S

MBS_CompanyColorGetRGB

This Developer API can be called from Visual Studio to obtain an
individual RGB color setting from the current Company Color Theme in
use. The color setting can then be used to set the BackColor of Windows
and Controls of WinForms so that they match the colors of the Dexterity
windows.

The parameter list for this call is:

in integer IN_Mode;

out integer OUT_red_level, OUT_green_level, OUT_blue_level;

An example C# script is:

Microsoft.Dexterity.Applications.GpPowerTools.Functions.MbsCompanyCo

lorGetRgb.Invoke(2, out redColor, out greenColor, out blueColor);

if ((redColor + greenColor + blueColor) > 0) {

 form.BackColor = Color.FromArgb(redColor, greenColor, blueColor);

}

Primarily the Window Background (Mode 2) and Field Background (Mode
4) can be used for Field colors. Pushbuttons should use (253, 253, 253) for
their color to match Dexterity windows.

 G P P O W E R T O O L S I N D E X

 G P P O W E R T O O L S 795

GP Power Tools Index

.
.Net Assemblies, 272, 292, 316, 318

.Net Execute

Goto Line …, 319

.Net Execute Information, 313

.Net Execute References, 318, 320

.Net Execute Script Clipboard, 315

Clear Script, 315

Copy Script, 315

.Net Execute Setup, 104, 235, 236, 287, 299, 312, 321, 328,

583

.Net Assemblies, 318

.Net Execute Information, 313

.Net Execute References, 318, 320

.Net Execute Script Clipboard, 315

.Net Execute Setup, 312

All Users and Companies, 317

Check Syntax, 319

Clear Script, 315

Clipboard Button, 315

Copy Script, 315

Dictionary Assembly Generator Control, 104

Divider Adjustment Buttons, 315

Duplicate Button, 316

Exclude Selected Users and Companies rather than include

them, 317

Execute, 320

Execute Button, 316

Find …, 319

Find Next, 319

Font Size, 320

Font Style, 320

Helper Button, 316

Helper Function Assistant, 316

Insert Button, 316

Insert Helper Function, 316

Long Description, 235, 314

Minimize Log Entries, 314

Names Button, 316

Names Button Uses Clipboard, 320

Notes Button, 313

Options, 320

Parameter ID, 314, 316

Parameter Lists, 314, 316

Parameters Button, 316

Project ID, 314

Publish Script for Users, 316

Published to Executer Window, 235, 314

References, 318, 320

References Button, 318

Release Notes, 313

Replace …, 319

Replace and Find Next, 319

Runtime Execute Setup, 287

Save and Continue, 319

Script, 315

Script ID, 313, 316, 583

Script Language, 315

Script Menu, 319

Script Name, 314

Selected Users and Companies, 317

SQL Execute Setup, 299

Syntax Errors, 315

Timestamp Button, 313

Users Button, 316

Visual Basic.Net, 315

Visual C#, 315

WinthropDC.GpPowerToolsVB.dll, 312, 320

WinthropDC.GpPowerToolsVC.dll, 312

.Net Executer, 235, 314

Execute Button, 235

Long Description, 235

Script ID, 235

WinthropDC.GpPowerToolsVB.dll, 235, 280

WinthropDC.GpPowerToolsVC.dll, 235

A
About Dexterity, 250

About GP Power Tools, 42, 46

Check for Updates, 46

GP Power Tools Modules, 43

Info, 43

Reinstall, 43

Uninstall, 42

Accelerator Key, 264, 368

Access Denied, 137

Account Framework, 392, 406

Actions Tab, 254, 265

Activate Company based Color Schemes, 165

Activate Debug Font Logging for the Report Writer, 76

Activate Debug Logging for the Report Writer, 76

Activate Word Template Processing Engine Logging, 76

Active Profile, 211, 212

Active SQL Profile Traces, 56, 57

ActiveX Data Objects, 52, 286

Add Application Details to GPPTools_<User>_<Company>

Log, 73

Add Attachment Button, 65

Add Button, 65, 202, 215, 242, 308, 362

Field Rule, 354, 363

Form Rule, 351, 362

Label, 358, 364

Resource, 362

Scrolling Window Rule, 353, 363

Window Rule, 352, 363

Add Exemption Button, 395

Add extra width to company name drop down list on

Company Login window, 174

Add Field Context Menu, 282

Add Form Menu, 282

Add Menu Below Entry, 258

Add Menu to Bottom, 258

Add Menu to Top, 258

Add Required Field, 356, 363

Add session details below signature when sending emails, 95

Add settings to target, 158

Adding Virtual Fields, 345

Additional Administrator Features, 230

Security Resource Descriptions, 230

SUPERUSER Security Task and Role, 230

SUPERUSER Workflow Setup, 230

G P P O W E R T O O L S I N D E X

796 G P P O W E R T O O L S

User Company Access Fix, 230

User Setup Additional Information, 230

Additional Database Features, 432

Keep Table Data for SQL Maintenance, 432

Send Password Reset Emails, 432

Table Information for SQL Maintenance, 432

Additional Developer Features, 347

Macro Play Fast, 347

Open Script Debugger on Startup, 348

Resource Information Context, 348

Runtime Execute Context, 348

Script Debugger Context, 347

Additional Launch File Installer, 22, 433

Additional System Features, 105

Database Information for Test and Historical companies,

107

Exit After Processes, 106

Find a Window, 105

Login Remember User, 105

Maintain Home Page Settings, 106

Mark User Inactive, 106

Multilingual Support for Test and Historical companies,

106

Raise All Windows, 106

Reload of User Dex.ini Settings, 106

Remember Last Company, 105

Transaction being Edited, 106

User Preferences Apply, 105

Addressing Virtual Fields, 345

Adds Allowed, 273, 499, 501, 503, 505

Administration Button, 262

Administrator Controlled Shared Folder Location, 82

Administrator Controlled Shared Folder Location for logs and

export files, 82

Administrator Email, 65, 93, 266, 267

Administrator Logout, 77

Administrator Password, 49, 80, 177

Administrator Password Setup, 80, 81

Administrator Password, 80

Challenge 'sa' user with Administrator password on login,

81

Don’t ask for users who have access to this window, 80

GP Power Tools Administrator Password, 80

Password Fields, 80

System Password, 80

Use separate password instead of System Password, 80

Administrator Settings, 60, 77, 137, 139, 148, 150, 152, 165,

166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177,

178, 179, 180, 182, 183, 184, 185, 186, 187, 203, 207, 208,

210, 230, 266, 267, 268, 284, 439

Activate Company based Color Schemes, 165

Add extra width to company name drop down list on

Company Login window, 174

Administrator Email, 266, 267

After Login warn user when password is due to expire, 176

After X Minutes, 184, 185

Allow per user selection of colors, 169

Allow selection of users for Company based Schemes, 168

Apply Button, 166

Attempt to close open Inquiry windows when logging out,

187

Attempt to save changes on open windows when logging

out, 187

Automatic Logout, 208

Automatic Logout, 443

Automatic Open Mode, 139, 179

Change User Setup Additional Information User Defined

Field Prompts, 182

Change Window Titles in Windows Start Bar, 173

Check for SQL activity before logging out inactive users,

186

Cleanup user activity records for disconnected users before

login and logout, 175

Colors Tab, 165

Company Colors Lookup, 166

Company Colors Users, 168

Custom Color Themes, 166, 170

Date Change Dialog Behavior, 187

Days to keep daily Max User and detailed data for, 184

Days to keep detailed log data for, 180

Default Export Mode, 178

Disable automatic closing of Login window and Company

Login window, 174

Disable automatic closing of Report Writer Screen Output

window, 175

Disable Automatic Logout warning dialog taking focus,

186

Disable Automatic Logout warning dialog when logging

out, 186

Disable check that Next Note Index is higher than

maximum used Note Index, 177

Disable logging of Security Errors and Warnings, 179

Disable SQL Server Version check for versions before

system requirements, 177

Disable updating Security Privilege warning to include

form name, 179

Disable User Setup Additional Information window

automatically opening, 180

Disable Window Position Memory feature, 174

Disable write checks for Temp, Data and Logging folders,

176

Display dialog on login for this company, 172

Enable a second optional override level, 185

Enable an a first optional override level, 185

Enable an additional user license sensitive level, 185

Enable Automatic Logout of inactive users, 184

Enable Security Activity Tracking, 148, 152, 180

Enable Security Activity Tracking when opening Smartlist,

180

Enable Security Activity Tracking with detail, 180

Enable User Activity Tracking, 183, 208

Enable User Activity Tracking with detail, 183

Entity ID Lookup, 167

Features Tab, 178

Field Background Color, 166

Include Current Launch File, 60, 178, 268

Include Dex.ini Settings File, 60, 178, 267

Include info for all databases, 60, 178, 268

Include User Dex.ini Settings File, 60, 178, 268

License Management, 183

License Tab, 183

Multi-Entity Management, 167

Number of days prior to password expiry to start warning,

176

Number of minutes to wait before attempting to close

windows, 175

Number of minutes to wait before closing Screen Output

window, 175

OK Button, 166

 G P P O W E R T O O L S I N D E X

 G P P O W E R T O O L S 797

Only require System or Administrator Password to be

entered once per session, 177

Per User Color Selection, 169, 170

Prevent application windows from opening outside of the

visible desktop area, 173, 203

Prevent user activity until login processes have completed,

175

Remove ACTIVITY table record to make license

available, 187

Reset Buttons, 166

Scrolling Window Line Color, 166

Select Automatic Logout hours, 185

Select Buttons, 166

Select Theme, 166, 170

Settings Applied Message, 178

Spinner Controls, 166

SQL Profile Trace Settings, 284

Suppress Next Note Index warning for Test and Historical

Companies, 177

Test Button, 186

Theme Group, 166, 171

Theme Name, 166, 171

Usability Tab, 172, 207

User Colors Button, 170

User Message, 185, 443

User Setup Additional Information, 230

Warn user if drive space for Temp, Data or Logging

folders below, 176

When only X% of licenses available, 185

Window Background Color, 166

Window Heading Color, 166

Window Toolbar Color, 166

Windows Start Bar, 173

Administrator Tools, 13, 15, 108, 109, 130, 136, 140, 148,

152, 155, 156, 161, 163, 165, 188, 192, 197, 203, 208, 211,

215, 219, 225, 227, 230

Additional Administrator Features, 230

Administrator Settings, 165

Company Login Filter, 197

Deny Based Security, 155

Dex.ini Configuration, 188

Dictionary Control, 192

Dynamic Product Selection, 219

Enhanced Security, 156

Launch File Configuration, 215

Login Limits, 211

Product Version Validation, 227

Resource Finder, 130

Resource Information, 109

Security Analyzer, 152

Security Denied, 161

Security Hidden, 163

Security Information, 140

Security Log, 148

Security Profiler, 136

User Activity Log, 208

Website Settings, 225

Window Position Memory, 203

ADO, 52, 286

Advanced Mode, 13, 24, 49, 53, 54, 55, 80, 82, 93, 97, 98, 99,

101, 103, 137, 165, 188, 192, 197, 203, 208, 211, 215, 219,

225, 227, 236, 246, 254, 287, 299, 312, 321, 328, 337, 341,

350, 359, 375, 380, 381, 385, 389, 391, 412, 415, 417, 420,

422, 429, 434, 580, 581, 582, 583

.Net Execute Setup, 235, 312, 328, 583

Access, 49

Administrator Password, 49

Administrator Password Setup, 80

Administrator Settings, 137, 148, 152, 165, 208

Automatic Trigger Mode, 246

Company Login Filter, 197

Configuration Export/Import, 97

Configuration Maintenance, 99, 151

Copy User Settings, 417

Database Space Recovery, 429

Database Validation, 391

Development Project, 98

Dex.ini Configuration, 188, 434

Dictionary Assembly Generator Control, 103

Dictionary Control, 192

Dynamic Product Selection, 219

Dynamic Trigger Logging, 341

Email Settings, 93

Form Control, 350

Form Control Resources, 381

Form Control Setup, 359

Form Control Status, 380

Launch File Configuration, 215, 434

Logging Settings, 53, 54, 55, 82

Login Limits, 211

Messages Setup, 337

Note Fix Utility, 422

Parameter Lists, 328

Password Reset Email Settings, 415

Password Setup, 375

Product Version Validation, 227

Project Setup, 98, 236

Runtime Execute Setup, 232, 287, 328, 434, 580

Setup Backup and Restore, 101

Snippet Setup, 321

SQL Execute Setup, 233, 299, 328, 581, 582

SQL Login Maintenance, 412

SQL Server, 49

SQL Trigger Control, 196, 420

System Password, 49

Trigger Setup, 254

User Activity Log, 100, 208

Website Settings, 225

Window Position Memory, 203

XML Table Export, 385

XML Table Import, 389

Advanced Security, 218

After Field Change Script, 357, 363

After Field Post Script, 357, 363

After Field Pre Script, 357, 363

After Field Value Changed Script, 358, 364

After Form Post Script, 352, 362

After Form Pre Script, 351, 362

After Logging In, 259

After Login Event, 259

After Login Event (After Background), 259

After Login Event (Background), 259

After Login Event (Delayed), 259

After Login on Day X, 259

After Login on DOW, 259

After Login warn user when password is due to expire, 176

After Menu Selected, 259

After Original, 259

After Original Delayed, 259

After Scrolling Window Delete, 353, 363

G P P O W E R T O O L S I N D E X

798 G P P O W E R T O O L S

After Scrolling Window Fill, 354, 363

After Scrolling Window Insert, 354, 363

After Scrolling Window Post, 354, 363

After Scrolling Window Pre, 354, 363

After Scrolling Window Save, 353, 363

After Starting Triggers, 259

After Table Event, 259

After Time XX

XX, 259

After Timed Event, 259

After Window Activate Script, 353, 363

After Window Post Script, 353, 363

After Window Pre Script, 352, 363

After X Minutes, 184, 185

alias keyword, 305

All Except Disabled, 247

All Product Dictionaries, 372

All Traces on SQL Server, 56

All Triggers for select Project, 247

All Users, 56

All Users and Companies, 193, 200, 223, 241, 261, 293, 306,

317, 364, 366, 378

Allow Intelligent Cloud Insights as default for new users, 226

Allow Multiple Resources (OR mode, 372

Allow per user selection of colors, 169

Allow selection of users for Company based Schemes, 168

Allow Trigger Recursion, 285

Allowed Attempts, 377

AllowWrongDex, 445

Alternate, 136, 192

Alternate Mode, 373

Alternate/Modified Forms and Reports, 142, 154

Alternate/Modified Status, 192

Always allow access to this Company, 213

Application Level Menu, 257, 258, 259, 264

Application Level Security, 136, 137

Application Menus, 29

Application Tools Menu, 27

Application Window Position, 73

Application Window Size, 74

Application.GpPowerTools.dll, 20

Application.GpPowerTools.Metadata.dll, 20

Application.GpPowerTools.Metadata.xml, 20

Application.GpPowerTools.xml, 20

ApplicationName, 72, 444

Apply Advanced SQL Server options, 413

Apply Button, 166, 228, 413

Apply rule when password its entered correctly, 367

Apply to Fields Directly, 370

Apply User Status, 413

Area Page, 30, 42, 44, 46, 48, 58, 63, 67, 69, 80, 82, 93, 97,

99, 101, 103, 109, 130, 136, 140, 148, 152, 156, 161, 163,

165, 188, 192, 197, 203, 208, 211, 215, 219, 225, 227, 232,

233, 235, 236, 248, 254, 287, 299, 312, 321, 328, 337, 341,

359, 375, 380, 381, 385, 389, 391, 412, 415, 417, 420, 422,

429

Associated Tables Button, 111

Attachments, 65

Attempt to close open Inquiry windows when logging out,

187

Attempt to save changes on open windows when logging out,

187

Authentication, 96

Authentication Mode, 86

Auto Search, 131

Auto select if only one Company, 199

Auto Send, 66, 95

AutoInstallChunks, 72, 444

Automated Diagnostics, 440, 441

MBS_Debug_Automate_File, 440

MBS_Debug_Automate_Script, 440

MBS_Debug_Automate_Status, 441

Automatic Logging Mode

Trigger Status, 242

Automatic Logout, 184, 185, 186, 187, 208, 210

After X Minutes, 184, 185

Attempt to close open Inquiry windows when logging out,

187

Attempt to save changes on open windows when logging

out, 187

Auto Cancel, 210

Auto Count, 210

Auto Date, 210

Auto Exit, 210

Auto Time, 210

Automatic Logout Warning Dialog, 186

Check for SQL activity before logging out inactive users,

186

Date Change Dialog Behavior, 187

Disable Automatic Logout warning dialog taking focus,

186

Disable Automatic Logout warning dialog when logging

out, 186

Enable a first optional override level, 185

Enable a second optional override level, 185

Enable an additional user license sensitive level, 185

Enable Automatic Logout of inactive users, 184

Process Monitor, 184

Remove ACTIVITY table record to make license

available, 187

Select Automatic Logout hours, 185

Test Button, 186

User Activity Log, 210

Warning Dialog, 186

When only X% of licenses available, 185

Automatic Logout, 443

Automatic Logout Warning Dialog, 186

Automatic Open Mode, 139, 179

Automatic Start Only, 247

Automatic Trigger Mode, 246, 254

All Except Disabled, 247

All Triggers for selected Project, 247

Automatic Start Only, 247

DEFAULT, 247, 254

DEFAULT only, 247

GP Power Tools Setup, 662, 663

How to Setup, 246

Introduction, 246

Log File, 253

Non Logging All Except Disabled, 247

Non Logging Automatic Start Only, 247

Non Logging Triggers, 247, 248, 284, 285, 328, 633, 634,

635, 636, 662, 663

Old Field Value, 248

Only restart selected logs when trigger fires, 285

Parameter Placeholder, 328

Register, 248

Registration, 247

Setup, 328, 632, 633, 634, 635, 636, 637, 638, 639, 640,

641, 642, 644, 662, 663

 G P P O W E R T O O L S I N D E X

 G P P O W E R T O O L S 799

Trigger Event, 640, 641, 642, 644

Trigger Setup, 632, 633, 634, 635, 636, 637, 638, 639, 640,

641, 642, 644

Trigger Setup, 246, 254, 328, 434

Trigger Status, 248, 260

Triggering, 252

Unregister, 248, 260

Automatic Update Check, 46

Automatically check for updated keys, 45

Automatically check for updates, 46

Automatically Generate Passwords, 413

Automatically Install Chunk Files without displaying dialog,

72

Automatically open GP Power Tools main window after

login, 69

Automatically open Logging Control window after login, 71

B
Back Button, 110

Back Up Button, 126

Backup Button, 101

Base Settings, 350, 367, 372, 373

Bcc Button, 65

Bcc Field, 65

Before Logout Event, 259

Before Original, 259, 267

Binary Stream

Multi-Entity Management, 167

Bitmap Scaling, 78

Body, 65, 94, 415

Body Text, 65, 94

Bottom Button, 194, 199, 202, 216, 221, 308

C
Calculator, 67, 440

Cancel Button, 62, 66, 126, 203, 343, 413

Capture Dexterity Script Log, 83, 284

Capture Dexterity Script Profile, 83, 284

Capture Macro Recording, 83, 285

Capture Password Hash File, 399

Capture reads of settings not in Dex.ini file, 189

Capture Screenshots to default logging folder or email, 267

Capture SQL Log, 83, 284

Capture SQL Profile Trace, 83, 284

Case Insensitive, 377

Case Mode, 132

Case Sensitive, 111

CC Address, 415

Cc Button, 65

Cc Field, 65

CDO, 95

Challenge 'sa' user with Administrator password on login, 81

Change Field Caption, 357, 363

Change Password Next Login, 413

Change Start Mode Button, 262

Change State Button, 262

Change User Setup Additional Information User Defined

Field Prompts, 182

Change Window Title, 352, 363

Change Window Titles in Windows Start Bar, 173

Check for SQL activity before logging out inactive users, 186

Check for Updates, 46

Check Form Security, 270

Check Syntax, 278, 295, 309, 319

Check User Button, 201

Clean Up Button, 104

Cleanup user activity records for disconnected users before

login and logout, 175

Clear Button, 98, 99, 111, 131, 137, 343, 382, 418

Clear Changes Before Field, 357, 363

Clear Changes Before Window Close, 352, 363

Clear Field Value, 355, 363

Clear Script, 270, 290, 303, 315, 323

Clipboard Button, 270, 290, 303, 315, 323

Collaboration Data Objects, 95

Color Selection, 370

Colors Tab, 165

Comma Delimited, 126, 145, 150, 154, 162, 164, 210, 228,

234, 307

Company, 141, 149, 159, 162, 164, 209

Company Colors Lookup, 166

Company Colors Users, 168

Company Display Sort Order, 199

Company ID, 149, 162, 164, 209

Company Login, 174, 175

Company Login Filter, 197, 436

Add Button, 202

Auto select if only one Company, 199

Bottom Button, 199, 202

Check User Button, 201

Company Display Sort Order, 199

Company Login Filter Check, 201

Delete Button, 202

Display Company Database, 199

Down Button, 199, 202

Duplicate Button, 199

Edit Button, 202

Enable current Profile on this workstation, 198

Exclude Selected Users and Companies rather than include

them, 201

Hide, 199

Prefix for Disabled Companies, 199

Profile ID, 198, 199, 441

Profile Name, 198

Roll out Profile using Dex.ini Configuration, 199

Share User Settings for all Launch File Paths, 199, 200

Show Disabled Companies, 199

Top Button, 199, 202

Up Button, 199, 202

User Access Setup, 201

User Button, 199

Users Button, 200

Company Login Filter Check, 201

User Access Setup, 201

Company Login Folder

Dex.ini Configuration, 199

Company Tree, 423

Compression Mode, 430

Conditional Script, 246, 252, 265, 270, 271, 283

Configuration, 19

Configuration Export/Import, 97, 101, 236, 387, 438

Clear Button, 98

Customization Maintenance, 98

Export Button, 97

Export linked custom resources package on export and

import package on import, 98

File Name, 98

G P P O W E R T O O L S I N D E X

800 G P P O W E R T O O L S

Import Button, 97

Import Settings File, 97

Transfer User and Company details, 98

Configuration File Path, 238, 243

Configuration Maintenance, 99, 151, 438

Clear Button, 99

Redisplay Button, 99

Connect Section, 225, 442

Connect Section Website URL, 225

Constant, 109

Constant Explorer, 126, 277, 304, 440

Back Up Button, 126

Export Button, 126

Export Mode, 126

OK Button, 126

Refresh Dictionary Resources, 127

Contact Details, 44

Context Menu, 257, 258

Control Mode, 362

Convert References, 309, 326

Copy Button, 111, 157

Copy Script, 270, 290, 303, 315, 323

Copy SQL Profile Trace files to Logs and Export files

location, 92

Copy to current User in other Companies, 158

Copy to other Users in current Company, 157

Copy User Settings, 417, 437

Clear Button, 418

Filter Empty Tables, 418

Hide Excluded Tables, 418, 419

Insert, 418

Mark All Buttons, 419

Overwrite, 418

Preview Data Button, 419

Preview with Field Names, 417, 419

Process Button, 418

Redisplay Button, 419

Replace, 418

Source User ID, 417, 418

SQL Execute Setup, 419

System Tables with User ID & Company ID column, 418

System Tables with User ID column, 418

Target User ID, 417

Toggle Exclusion Button, 418, 419

Unmark All Buttons, 419

Create SQL Profile Trace SQL Components, 92

Create/Update Security Task, 138

Create/Update Security Task from Log, 149

Create/update Security Task from selected rows, 149

Current Project, 238

Current User only, 56

Custom Color Themes, 166, 170

Custom Forms, 289

Customization Maintenance, 98, 236, 239, 249

Customization Maintenance Selection, 242

Customization Status, 192, 196, 249

Customization Tools, 109, 136

D
DAG Control Button, 116, 318

DAG.EXE, 20, 103, 104

DAG.Tool, 20, 103, 104

Daily Event, 258

Data Source Name, 73

Database, 302

Database Information for Test and Historical companies, 107

Database Maintenance, 403

Database Space Recover, 437

Database Space Recovery, 429

Compression Mode, 430

Database Tree, 430

Mark All Button, 430

Process Button, 430

Redisplay Button, 430

Table List, 430

Table Type, 430

Unmark All Button, 430

Database Tools, 13, 16, 349, 384, 385, 389, 391, 412, 415,

417, 420, 422, 429, 432

Additional Database Features, 432

Copy User Settings, 417

Database Space Recovery, 429

Database Validation, 391

Note Fix Utility, 177, 422

Password Reset Email Settings, 415

SQL Login Maintenance, 412

SQL Trigger Control, 196, 420

XML Table Export, 385

XML Table Import, 389

Database Tree, 420, 430

Database Validation, 180, 391, 405, 412, 415, 437

Account Framework, 392, 406

Add Exemption Button, 395

Capture Password Hash File, 399

Database Maintenance, 403

Database Validation Exemptions, 396

Dynamics GP Utilities, 392, 401

Edit Framework Button, 400

Email Settings, 398

Exemptions, 395, 396

Exemptions Button, 396

Fix Account Framework, 400, 406

Fix Framework Button, 400

Fix Tables, 401, 410

Fix Tables Button, 401

Fix Users and Databases, 398, 406

Fix Users Button, 398

Fix Utilities, 399, 406

Fix Utilities Button, 399

Legend, 397

Legend Button, 397

OK Button, 394

Only include SQL Table & Views which have a

DEX_ROW_ID column, 403

Only Show Tables with Account Fields, 403

Options Menu, 405, 412

Override to Convert Table Structures without using

Dynamics Utilities, 401

Password Hash File, 398

Password Reset Email Settings, 398

Print Button, 397

Print Report, 397

Process Button, 394

Redisplay Button, 394

Remove Exemption Button, 396

Reset User SQL Logins and Passwords, 405, 412

Show Structure Errors Button, 404

Table Structure Errors, 404

Use Password Hash File where possible, 398

 G P P O W E R T O O L S I N D E X

 G P P O W E R T O O L S 801

User Email Address, 180

User Setup Additional Information, 398, 413, 415

Using Database Validation, 406

Validate Button, 395

Database Validation Exemptions, 396

Exemption Mode, 396

Object Mode, 396

Remove All, 396

Remove Selected, 396

View Mode, 396

Database Validation Exemptions, 396

Database ValidationUsers and Databases, 392

Date Change Dialog Behavior, 187

Days to keep daily Max User and detailed data for, 184

Days to keep detailed log data for, 180

Debug Expressions, 119, 134, 244, 280, 297

Debug Menu, 70

Debug Menu Product, 70

Debug Tab, 69

Debug Table Buffers, 120, 135, 245, 281, 298

Debug Watch, 119, 135, 245, 280, 298

DebugFonts, 76, 446

Debugger.xml, 21, 31, 101, 433

DebugLog.txt, 76, 446

DebugRW, 76, 445

DebugRW.txt, 76, 445

DEFAULT, 100, 247, 254

Default Body Text, 65

Default Body Text for Send Email window, 94

Default Button, 204, 271, 416

Default Export Mode, 178

Default Field Value, 355, 363

Default last Company used on login, 73

Default last User ID used on login, 73

Default last User ID used on login to Windows User, 73

Default maximum sessions per User, 212

DEFAULT only, 247

Default Site ID, 181

Invoice Entry, 181

Item Inquiry, 181

Item Transaction Entry, 181

Item Transfer Entry, 181

Purchase Order Entry, 181

Purchase Requisition Entry, 181

Receivings Transaction Entry, 181

Sales Transaction Entry, 181

Default Subject, 65, 93

DefaultLastCompany, 73, 434

DefaultLastUser, 73, 446

DefaultLastUserWindows, 73, 443

Delete Button, 161, 163, 194, 202, 216, 228, 239, 344, 424

Delete Disabled Triggers Button, 421

Delete Record, 257

Deny Based Security, 142, 155, 156, 159, 161, 162, 163, 164

Enhanced Security, 142, 156, 159, 162, 164

Security Denied, 142, 159, 161

Security Hidden, 142, 159, 163

Description, 220, 339

Description of Modified/Alternate Resource, 221

Detail Format, 152

Details Button, 150, 210

Developer, 246

Developer APIs, 791

MBS_CompanyColorGet, 796

MBS_CompanyColorGetRGB, 797

MBS_Email_API, 577, 735, 792

MBS_WindowPositionCheck, 793

MBS_WindowPositionMemory, 794

MBS_WindowPositionMemoryResize, 795

Developer Tools, 13, 16, 231, 232, 233, 235, 236, 246, 254,

287, 299, 312, 321, 328, 337, 341, 345, 347

.Net Execute Setup, 312, 321

.Net Executer, 235

Additional Developer Features, 347

Automatic Trigger Mode, 246

Dynamic Trigger Logging, 341

Messages Setup, 337

Parameter Lists, 328

Project Setup, 236

Runtime Execute Setup, 287, 321

Runtime Executer, 232

Snippet Setup, 321

SQL Execute Setup, 299, 321

SQL Executer, 233

Trigger Setup, 254, 321

Virtual Fields, 345

Development Project, 98

Dex.chm, 20

Dex.dic, 445

DEX.DIC, 434

Dex.ini, 60, 69, 178, 188, 189, 197, 201, 267, 268, 433

Global, 60, 69, 178, 189, 267

MBS_Debug_ExportCompatibilityWarning, 243

User, 60, 69, 178, 189, 268

Dex.ini Configuration, 188, 189, 199, 434, 439, 442

Capture reads of settings not in Dex.ini file, 189, 442

Company Login Folder, 199

Dex.ini, 188

Dex.ini Settings Inspector, 191

Display Dex.ini Settings, 189

Do not update any Dex.ini settings automatically, 189

Edit Dex.ini Button, 191

Info Button, 189

Log, 189

Print Button, 189

Search Mode, 188, 189

Setting or Search String, 188, 189

Settings List, 188

Silent, 188

Target Dex.ini, 189

Value, 189

Dex.ini Setting

MBS_Debug_DisableWebsiteSettings, 226

Dex.ini Settings, 21, 42, 54, 69, 82, 187, 206, 252, 266, 368,

433

Activate Debug Font Logging for the Report Writer, 76

Activate Debug Logging for the Report Writer, 76

Activate Word Template Processing Engine Logging, 76

Add Application Details to

GPPTools_<User>_<Company> Log, 73

AllowWrongDex, 445

Application Window Position, 73

Application Window Size, 74

ApplicationName, 72, 444

AutoInstallChunks, 72, 444

Automatically Install Chunk Files without displaying

dialog, 72

Automatically open GP Power Tools main window after

login, 69

G P P O W E R T O O L S I N D E X

802 G P P O W E R T O O L S

Automatically open Logging Control window after login,

71

Debug Tab, 69

DebugFonts, 76, 446

DebugRW, 76, 445

Default last Company used on login, 73

Default last User ID used on login, 73

Default last User ID used on login to Windows User, 73

DefaultLastCompany, 73, 434

DefaultLastUser, 73, 446

DefaultLastUserWindows, 73, 443

Dexterity Debug Menu Product, 70

Dexterity Profile, 71

Dexterity Script, 71

Disable closing of the OLE Contain.exe on exit, 78

Disable Ribbons for workstation on next login, 73

Disable Screen Output window position memory, 76

Display More Info button on Process Monitor, 78

DUIRedraw, 78

Enable Debugger Setup Mode, 69

Enable Dexterity Debug Menu on next login, 70

Enable Enhanced Script Log on next login, 70

Enable GP Power Tools Setup Mode, 70

Enable Scrollbar width override, 78

Enable selection of Data Server on Login, 73

Enable SQL Logging on next login, 70

EnableServerDropDown, 73, 446

EnableWCRibbons, 73, 446

Export Body Section as One Line, 75

ExportLinesPerPage, 75, 445

ExportOneLineBody, 75, 445

ExportPDFLinesPerPage, 75, 445

Folder location for logs and export files, 25, 71

Force Date Change when Dialog is suppressed, 77

GP Power Tools Settings, 433

Integration Manager

Redraw UI when importing, 78

Show Dynamics while importing, 78

KeepTemplateTempFiles, 76, 446

MaxSWScrollbarSize, 78, 446

MBS_Debug_Automate_File, 440

MBS_Debug_Automate_Script, 440

MBS_Debug_Automate_Status, 441

MBS_Debug_AutoOpen, 71, 433

MBS_Debug_Break, 348, 442

MBS_Debug_CaptureSettings, 442

MBS_Debug_CompanyFilter, 198, 202, 441

MBS_Debug_CompanySwitchWidth, 174, 434

MBS_Debug_ConfigurationOverride, 189, 434

MBS_Debug_DexIniCheck, 442

MBS_Debug_DisableScreenOutputMemory, 76, 440

MBS_Debug_DisableSplitters, 441

MBS_Debug_DisableTimedProcessRestore, 443

MBS_Debug_DisableWebsiteSettings, 442

MBS_Debug_ExportCompatibilityWarning, 443

MBS_Debug_HideGames, 443

MBS_Debug_Install, 23, 433

MBS_Debug_LastRunSystem, 441

MBS_Debug_LastRunUser, 441

MBS_Debug_LaunchConfigurationOverride, 217, 434

MBS_Debug_LogAppDetails, 73, 434

MBS_Debug_LogListPath, 343, 344, 442

MBS_Debug_LogOnStartup, 71, 433

MBS_Debug_LogWinData, 441

MBS_Debug_LookupPosition, 442

MBS_Debug_NamesUseClipboard, 442

MBS_Debug_Path, 71, 82, 433

MBS_Debug_ProductVersionOverride, 442

MBS_Debug_ProductVersionOverride, 228

MBS_Debug_RuntimeCheck, 433

MBS_Debug_SetupMode, 70, 433

MBS_Debug_ShowRuntime, 434

MBS_Debug_SkipVersionChecks, 441

MBS_Debug_UpdateLastUserOnExit, 73, 434

MBS_Debug_UserMessageReplace, 185, 443

MBS_Debug_ValidateLaunchFile, 442

MBS_Debug_VBADisableReset, 441

MBS_Debug_VBADisableReset, 195

MBS_Debug_Version, 433

MBS_Debug_VSTDisable, 441

MBS_Debug_VSTDisable, 195

MBS_Debug_VSTDisableReset, 441

MBS_Debug_VSTDisableReset, 195

MBS_Debug_WCBackground, 442

MBS_Debug_WinActivityLog, 436

MBS_Debug_WinActivityLogDetail, 436

MBS_Debug_WinActivityLogMaxUser, 436

MBS_Debug_WinAdminSettings, 439

MBS_Debug_WinCalculator, 440

MBS_Debug_WinCompanyFilter, 436

MBS_Debug_WinConfigSettings, 439

MBS_Debug_WinConfigurationExportImport, 438

MBS_Debug_WinConfigurationMaintenance, 438

MBS_Debug_WinConstantExplorer, 440

MBS_Debug_WinCopyUserSettings, 437

MBS_Debug_WinDAGControl, 440

MBS_Debug_WinDatabaseSpaceRecovery, 437

MBS_Debug_WinDatabaseValidation, 437

MBS_Debug_WinDebugger, 434

MBS_Debug_WinDebuggerSetup, 435

MBS_Debug_WinDebuggerStatus, 435

MBS_Debug_WinDictionaryControl, 436

MBS_Debug_WinEmailSettings, 439

MBS_Debug_WinFieldLookup, 439

MBS_Debug_WinFormControlResources, 438

MBS_Debug_WinFormControlSetup, 438

MBS_Debug_WinFormControlStatus, 438

MBS_Debug_WinFormExplorer, 440

MBS_Debug_WinGlobalExplorer, 440

MBS_Debug_WinKeyLookup, 440

MBS_Debug_WinLaunchFileConfig, 436

MBS_Debug_WinLoggingSettings, 439

MBS_Debug_WinLoginLimits, 436

MBS_Debug_WinLoginMaintenance, 437

MBS_Debug_WinMenuExplorer, 439

MBS_Debug_WinMessagesSetup, 438

MBS_Debug_WinNetExecute, 438

MBS_Debug_WinNetExecuter, 438

MBS_Debug_WinNoteFixUtility, 437

MBS_Debug_WinObjectExplorer, 439

MBS_Debug_WinParameterMaintenance, 438

MBS_Debug_WinPasswordSetup, 438

MBS_Debug_WinProductSelection, 436

MBS_Debug_WinProductVersion, 436

MBS_Debug_WinProjectSetup, 437

MBS_Debug_WinReportExplorer, 439

MBS_Debug_WinResourceExplorer, 439

MBS_Debug_WinResourceFinder, 435

MBS_Debug_WinResourceInformation, 435

MBS_Debug_WinRuntimeExecute, 437

 G P P O W E R T O O L S I N D E X

 G P P O W E R T O O L S 803

MBS_Debug_WinRuntimeExecuter, 437

MBS_Debug_WinScreenOutput, 440

MBS_Debug_WinScreenOutput, 76

MBS_Debug_WinScreenShot, 438

MBS_Debug_WinScriptExplorer, 439

MBS_Debug_WinSecurityAnalyzer, 435

MBS_Debug_WinSecurityDeny, 435

MBS_Debug_WinSecurityEnhanced, 435

MBS_Debug_WinSecurityHide, 436

MBS_Debug_WinSecurityInfo, 435

MBS_Debug_WinSecurityInfoResource, 435

MBS_Debug_WinSecurityLog, 435

MBS_Debug_WinSecurityLogDetail, 435

MBS_Debug_WinSecurityLogResource, 435

MBS_Debug_WinSecurityProfiler, 435

MBS_Debug_WinSendEmail, 439

MBS_Debug_WinSnippetSetup, 438

MBS_Debug_WinSQLExecute, 437

MBS_Debug_WinSQLExecuter, 437

MBS_Debug_WinSQLResults, 437

MBS_Debug_WinSQLTriggerControl, 437

MBS_Debug_WinTableExplorer, 439

MBS_Debug_WinTableLookup, 439

MBS_Debug_WinTriggerListMaintenance, 438

MBS_Debug_WinWebsiteSettings, 436

MBS_Debug_WinWindowMemory, 436

MBS_Debug_WinXMLTableExport, 436

MBS_Debug_WinXMLTableImport, 437

MouseWheel, 446

Name shown on Application title bar during initial loading,

72

Number of Lines Per Page when Exporting Reports (inc.

PDF), 75

OLEClose, 78, 447

Open Application Maximized on next login, 73

Other Tab, 77

Pathname location for Debugger Setup files, exports and

logs, 54, 82, 252

Pathname location for SQL Log file, 70

QueueMoreInfo, 78, 446

RememberUser, 105

Rename DEXSQL.LOG at the beginning of each day, 70

Reports Tab, 75

Reset Window Positions, 71, 206

Restore Legacy Print Dialog, 76

SAMPLEDATEMSG, 72, 445

Script Editor Settings, 448

ScriptCommentColor, 448

ScriptDebugger, 70, 444

ScriptDebuggerProduct, 70, 444

ScriptEditorFontName, 448

ScriptEditorFontSize, 448

ScriptEditorSyntaxColoring, 448

ScriptErrorColor, 448

ScriptIdentifierColor, 448

ScriptKeywordColor, 448

ScriptLogEnhanced, 70, 444

ScriptNumberColor, 448

ScriptOperatorColor, 448

ScriptStringColor, 448

Show Advanced Macro Menu, 77

Show All Menu Items, 78

Show Debug Messages on next login, 70

ShowAdvancedMacroMenu, 77, 445

ShowAllMenuItems, 78, 445

ShowDebugMessages, 70, 444

ShowDynamics, 78

SkipVersionChecks, 445

SQL Logging, 71

SQLLastCompany, 105, 434

SQLLogAllODBCMessages, 444

SQLLoginCompatibilityMode, 73, 445

SQLLogODBCMessages, 70, 444

SQLLogPath, 70, 444

SQLLogRename, 70, 434

SQLLogSQLStmt, 70, 444

Start Logging on next startup only, 55, 71

Startup Tab, 72

Suppress Date Change Dialog, 77

Suppress Sample Company Date Warning, 72

Suppress Sound from Application, 78

SuppressChangeDateDialog, 77, 187, 443, 445

SuppressChangeDateForce, 77, 187, 443, 445

SuppressSound, 78, 445

System Settings, 444

TPELogging, 76, 446

Update User ID and Company on exit, 73

Use SQL Login Compatibility Mode, 73

VBADisable, 195, 446

WDC_InstallExclude, 23, 433

WindowHeight, 74, 446

WindowMax, 73, 446

WindowPosX, 73, 446

WindowPosY, 73, 446

Windows Bitmap Font Registry Settings, 78

Windows Bitmap Scaling Settings, 21, 78

WindowWidth, 74, 446

Dex.ini Settings Inspector, 191

DEXSQL.LOG, 52, 54, 70, 444

DEXSQL_<Date>_<Time>.LOG, 54

Dexterity, 26, 52, 75, 83, 109, 110, 116, 192, 232, 246, 247,

248, 252, 254, 259, 272, 284, 285, 286, 287, 292, 303, 305,

434

Constant, 109

Customization Status, 192

Debug Menu, 70

Debug Menu Product, 70

Developer, 246

Dexterity Script Logging, 52, 83, 284

Dexterity Script Profiling, 52, 83, 284

Dictionary, 109

Display Name, 109, 305

Enable Enhanced Script Log on next login, 70

Field, 109, 246, 264, 305

Form, 109, 263

Function, 109, 264

Global Variable, 109

Macro Recording, 52, 83, 285

Message, 109

Physical Name, 109, 305

Procedure, 109, 264

Report, 109

Resource ID, 109

Resources, 109

Sanscript, 232, 246, 272, 287, 292, 303, 434

Script, 109

Show Debug Messages on next login, 70

Table, 109, 246, 263, 305

Table Group, 109

Technical Name, 109, 263, 264

G P P O W E R T O O L S I N D E X

804 G P P O W E R T O O L S

Trigger, 192, 246, 247, 248, 252, 254, 259, 286

Warning, 109

Window, 109, 264

Dexterity Call, 782, 784, 786, 788, 790

ServiceCreateCustom, 782

ServiceDeleteCustom, 784

ServiceGetCustom, 786

ServicePostCustom, 790

ServiceUpdateCustom, 788

Dexterity Debug Menu, 70

Dexterity Debug Menu Product, 70

Dexterity Profile, 71

Dexterity Script, 71

Dexterity Script Logging, 52, 83, 284

Dexterity Script Profiling, 52, 83, 284

Diagnostics, 440, 441

MBS_Debug_Automate_File, 440

MBS_Debug_Automate_Script, 440

MBS_Debug_Automate_Status, 441

Dialog Message, 266

Dialog mode when selecting product, 221

Dialog/Alert Type, 266, 368

Dictionary, 109

Dictionary Assembly, 116

Dictionary Assembly Generator, 20, 103, 104

Dictionary Assembly Generator Control, 103, 104, 116, 318,

440

.Net Execute Setup, 104

Clean Up Button, 104

DAG Control Button, 116, 318

Dictionary Code, 103

Generate Button, 103

OK Button, 103

Redisplay Button, 104

Resource Information, 104, 116, 318

SBA, 103

Service Based Architecture, 103

Dictionary Code, 103

Dictionary Control, 192, 436

All Users and Companies, 193, 200

Alternate/Modified Status, 192

Bottom Button, 194

Customization Status, 196

Delete Button, 194

Disable Visual Basic for Applications (VBA) on next

login, 195

Disable Visual Studio Tools (VST) Addins on next login,

195

Disabled After Login for Users, 193

Down Button, 194

Enable Visual Basic for Applications after one login, 195

Enable Visual Studio Tools Addins after one login, 195

Exclude Selected Users and Companies rather than include

them, 193

Field Level Security, 196

Info Button, 196

Selected Users and Companies, 193, 200

Show Launch File, 196

Top Button, 194

Trigger Status, 192

Up Button, 194

Dictionary ID, 342

Disable automatic closing of Login window and Company

Login window, 174

Company Login, 174, 175

Login, 174, 175

Disable automatic closing of Report Writer Screen Output

window, 175

Disable Automatic Logout warning dialog taking focus, 186

Disable Automatic Logout warning dialog when logging out,

186

Disable check that Next Note Index is higher than maximum

used Note Index, 177

Disable closing of the OLE Contain.exe on exit, 78

Disable Field, 355, 363

Disable Form, 351, 362

Disable logging of Security Errors and Warnings, 179

Disable Ribbons for workstation on next login, 73

Disable Screen Output window position memory, 76

Disable SQL Server Version check for versions before system

requirements, 177

Disable trigger after Condition met, 285

Disable Triggers Button, 421

Disable updating Security Privilege warning to include form

name, 179

Disable User Setup Additional Information window

automatically opening, 180

Disable Visual Basic for Applications (VBA) on next login,

195

Disable Visual Studio Tools (VST) Addins on next login, 195

Disable Window, 352, 363

Disable Window Position Memory feature, 174

Disable write checks for Temp, Data and Logging folders,

176

Disabled, 238, 260, 361, 377

Disabled After Login for Users, 193

Display Company Database, 199

Display Dex.ini Settings, 189

Display dialog on login for this company, 172

Display Excluded and Missing Resources, 159

Display Keys Button, 113

Display Message, 252, 266

Display Message to screen using desktop alert, 265

Display Message to screen using simple system dialog instead

of text box dialog, 266, 368

Display Message to screen using system dialog, 265

Display Mode, 148, 162, 164, 208

Display More Info button on Process Monitor, 78

Display Name, 109, 305

Display only Selected Users, 159

Display Parameters, 116

Display Parameters Button, 116

Display Records, 424

Display Security Tasks and Roles, 146

Display Usage Button, 114

Divider Adjustment Buttons, 304, 315

Do not activate Logging Mode, 260

Do not apply Website Settings on this workstation, 226

Do not check for Version Mismatch, 228

Do not run missed event on next login, 283

Do not update any Dex.ini settings automatically, 189

Do not update the Launch File automatically, 217

Document Access, 109, 136

Don’t ask for users who have access to this window, 80

Down Button, 194, 199, 202, 216, 221, 308, 335

DPS, 283, 362

DSN, 73

DUIRedraw, 78

DUOS, 584, 585, 586, 587, 645, 646, 647, 648

 G P P O W E R T O O L S I N D E X

 G P P O W E R T O O L S 805

Duplicate Button, 199, 213, 222, 240, 260, 293, 305, 316,

324, 335, 339, 365, 378, 386

Duplicate Records, 390

Dynamic Product Selection, 219, 436

All Users and Companies, 223

Alternate, 219

Alternate/Modified Forms and Report ID, 219

Bottom Button, 221

Description, 220

Description of Modified/Alternate Resource, 221

Dialog mode when selecting product, 221

Down Button, 221

Duplicate Button, 222

Enabled for Users, 221, 222

Exclude Selected Users and Companies rather than include

them, 223

Modified Alternate, 219

Modified/Alternate ID, 219, 222

Modifiedl, 219

Only show selected when expanding tree, 221

Original, 219

Resource Tree, 221

Resource Type, 221

Selected Users and Companies, 223

Selection List, 221

Short Description used for dialog buttons, 221

Top Button, 221

Up Button, 221

User Button, 221

User Security, 219

Users Button, 221, 222

Dynamic Trigger Logging, 341

Cancel Button, 343

Clear Button, 343

Delete Button, 344

Dictionary ID, 342

Field Name, 342

File Path, 342, 442

Form Name, 342

OK Button, 343

Product Dictionary, 342

Redisplay Button, 344

Script Expansion Button, 343

Trigger Mode, 342

Trigger Type, 342

Window/Table/Procedure/Function Name, 342

Dynamics GP Utilities, 392, 401

Dynamics Process Server, 283, 362

Dynamics Trigger Logging, 438

Dynamics.exe.config, 195

Dynamics.set, 31, 42, 60, 72, 103, 193, 194, 196, 197, 215,

268

E
eConnect, 286

Edit Button, 202

Edit Dex.ini Button, 191

Edit Fields Button, 425, 428

Edit Framework Button, 400

Edit SQL Profile Trace Settings, 84

Email, 45

Email Address, 266

Email Button, 61

Email Mode, 95

Email Screenshots using Administrator Email or Email

Address below, 267

Email Settings, 95, 96

Authentication, 96

Auto Send, 95

Exchange Web Services, 95

MAPI Compliant Client, 95

Multi-Factor Authentication, 95

Outlook, 95

Password, 96

Preview, 95

Send HTML, 95

Sender’s Email, 96

SMTP Server, 96

SMTP Server Port, 96

SMTP Server via .Net Addin, 95

SMTP Server via CDO, 95

Terminal Server, 95

User ID, 96

Email Settings, 61, 64, 65, 66, 93, 94, 95

Add session details below signature when sending emails,

95

Administrator Email, 65, 93

Auto Send, 66

Body Text, 64

Default Body Text, 65

Default Body Text for Send Email window, 94

Default Subject, 64, 65, 93

Email Email, 64

Email Mode, 95

Microsoft Outlook Client, 95

Preview, 64, 66

Sender’s Email, 65

Standard Signature to add to all emails, 94

Subject, 64

Email Settings, 126

Email Settings, 137

Email Settings, 145

Email Settings, 150

Email Settings, 154

Email Settings, 162

Email Settings, 164

Email Settings, 210

Email Settings, 228

Email Settings, 234

Email Settings, 307

Email Settings, 398

Email Settings, 413

Email Settings, 439

Emal Settings

Default Body Text, 64

Employee ID, 180

Enable a first optional override level, 185

Enable a second optional override level, 185

Enable an additional user license sensitive level, 185

Enable Autocomplete Field, 356, 363

Enable Automatic Logout of inactive users, 184

Enable current Profile on this workstation, 198

Enable Debugger Setup Mode, 69

Enable Dexterity Debug Menu on next login, 70

Enable Enhanced Script Log on next login, 70

Enable GP Power Tools Setup Mode, 70

Enable in Service Mode, 283, 362

Enable in Web Client, 283, 362

Enable Individual Logging Modes, 55, 83

G P P O W E R T O O L S I N D E X

806 G P P O W E R T O O L S

Enable Scrollbar width override, 78

Enable Security Activity Tracking, 148, 152, 180

Enable Security Activity Tracking when opening Smartlist,

180

Enable Security Activity Tracking with detail, 180

Enable selection of Data Server on Login, 73

Enable SQL Logging on next login, 70

Enable systemwide control of the Homepage Connect Section

website, 225

Enable systemwide control of the Homepage Intelligent

Cloud Insights Section website, 225

Enable Triggers Button, 421

Enable User Activity Tracking, 183, 208

Enable User Activity Tracking with detail, 183

Enable Visual Basic for Applications after one login, 195

Enable Visual Studio Tools Addins after one login, 195

Enabled for Users, 221, 222

EnableServerDropDown, 73, 446

EnableWCRibbons, 73, 446

End Date, 282

Enforce Password Expiration, 413

Enforce Password Policy, 413

Enhanced Security, 142, 156, 159, 162, 164, 435

Add settings to target, 158

Company, 159

Copy Button, 157

Copy to current User in other Companies, 158

Copy to other Users in current Company, 157

Deny Based Security, 159

Display Excluded and Missing Resources, 159

Display only Selected Users, 159

Enhanced Security Legend, 157

Legend Button, 157

OK Button, 157

Options Menu, 159

Redisplay Button, 157

Refresh Application Navigation, 159

Reset target before copying, 158

Resource Info Button, 158

Scan for missing Menu Entries, 159

Security Button, 159

Security Information, 159, 162

Show Table Groups, 159

SY09400, 160

syCurrentResources, 160

User ID, 159

Enhanced Security Legend, 157

Entity ID Lookup, 167

Error Handling, 283

Every 1 Minute, 258

Every 10 Minutes, 258

Every 15 Minutes, 258

Every 30 Minutes, 258

Every 5 Minutes, 258

Every 60 Minutes, 258

Examples of use, 17

Exception Error Dialog, 292, 304

Exchange Web Services, 95

Exclude Button, 382

Exclude Resources, 372

Exclude Selected Users and Companies rather than include

them, 193, 201, 223, 241, 261, 294, 306, 317, 364, 366,

379

Exclude Tables Button, 426

Excluded from Security, 149

Execute, 243, 295, 310, 320

Execute Button, 232, 233, 235, 243, 292, 304, 316

Execute Change Script, 273, 471, 472, 473, 474, 475, 476,

477, 483, 484, 485, 486, 487, 488, 489

Execute Dexterity SanScript code in the context of Product,

290, 323

Execute Query in which SQL Database, 302

Execute Script for all Companies, 302

Execute Script in context of current form, 368

Execute Selection, 292, 304

Execution Mode, 283

Exempt user from system maximum sessions limit, 213

Exemptions, 395, 396

Exemption Mode, 396

Object Mode, 396

Remove All, 396

Remove Selected, 396

View Mode, 396

Exemptions Button, 396

Exit After Processes, 27, 106

Expanded Fields, 127

Expansion Button, 302

Export Body Section as One Line, 75

Export Button, 97, 126, 137, 145, 150, 154, 162, 164, 210,

228, 234, 241, 307, 386

Export Compatibility Warning, 243

Export Current Table Record to XML, 266

Export Entire Table to XML restricted by Where Clause, 266

Export Linked Custom Resources, 239

Export linked custom resources package on export and import

package on import, 98

Export Mode, 126, 145, 150, 154, 162, 164, 210, 228, 234,

307

Export Path, 386, 387, 390

Export Record, 252

Export Table, 252

ExportLinesPerPage, 75, 445

ExportOneLineBody, 75, 445

ExportPDFLinesPerPage, 75, 445

Expression, 351, 368, 369

Expression Mode, 369

Expression Usage Help, 369

Expression Usage Help Button, 369

Extender Resources, 109, 136

F
Features Tab, 178

Feedback Survey, 48

Field, 109, 246, 264, 305

Change, 257, 258

Changed, 258

Post, 257, 258

Pre, 257, 258

Value Changed, 257

Field Background Color, 166

Field Context, 258

Field Context Menu, 259

Field Context Menu, 257, 258

Field Descriptions, 118, 133

Field Explorer, 123, 277

Field Information, 129

field keyword, 305

Field Level Security, 196, 350, 351

Field Lookup, 115, 439

 G P P O W E R T O O L S I N D E X

 G P P O W E R T O O L S 807

Field Mode, 373

Field Name, 264, 266, 342, 374

Field Position, 374

Field Rule, 354, 363

Add Required Field, 356, 363

After Field Change Script, 357, 363

After Field Post Script, 357, 363

After Field Pre Script, 357, 363

After Field Value Changed Script, 358, 364

Change Field Caption, 357, 363

Clear Changes Before Field, 357, 363

Clear Field Value, 355, 363

Default Field Value, 355, 363

Disable Field, 355, 363

Enable Autocomplete Field, 356, 363

Format String Field Value, 356, 363

Hide Field, 355, 363

Lock Field, 355, 363

Mask Field Value, 356, 363

Password Field After, 354, 363

Password Field Before, 354, 363

Reject Field Change Script, 357, 363

Reject Field Post Script, 357, 363

Reject Field Pre Script, 357, 363

Round Decimals Field Value, 356, 363

Set Field Background Color, 356, 363

Set Field Font Color, 356, 363

Set Field Value, 355, 363

Set Focus to Field, 357

Set Focus to Next Field, 357

Strip Invalid Field Characters, 355, 363

Uppercase Field Value, 356, 363

Validate Field Value, 355, 363

Warning Field Before, 355, 363

File Name, 98

File Path, 342, 442

Filter Empty Tables, 132, 418

Filter for Field, 132

Filter for Field (Field List), 132

Filter for Value, 132

Filter Menus, 147

Filter Mode, 131

Filter Modes, 209

Filter Tables having field, 112

Filter to exclude Timestamp Triggers, 420, 421

Find …, 278, 294, 308, 319, 325

Find a Window, 29, 105

Find Button, 233, 307

Find in Scripts, 243

Find Next, 278, 294, 308, 319, 325

Fix Account Framework, 400, 406

Fix Framework Button, 400

Fix Notes Button, 425

Fix Tables, 401, 410

Fix Tables Button, 401

Fix Users and Databases, 398, 406

Fix Users Button, 398

Fix Utilities, 399, 406

Fix Utilities Button, 399

Focus Event, 257, 259, 267, 282

Focus Event with Table, 257, 259

Focus First Window Field, 352

Folder location for logs and export files, 25, 71

Folder on local drive on SQL Server, 91

Font Size, 279, 295, 309, 320, 326, 448

Font Style, 279, 295, 309, 320, 326, 448

Force Date Change when Dialog is suppressed, 77

Form, 109, 136, 263

Level, 257

Level with Parameters, 257, 640, 641, 642, 644

Post, 257, 258

Pre, 257, 258

Form Control, 345, 350, 753, 754, 755, 756, 757, 758, 759,

760

Conditional Script, 350, 351, 352, 353, 354, 355, 356, 357,

358, 368, 369, 370, 371, 759, 760

Field Level Security, 350, 351

Field Rule, 354, 363

Form Control Conditional Script, 350, 351, 352, 353, 354,

355, 356, 357, 358, 368, 369, 370, 371

Form Control Resources, 350

Form Control Rule Types, 351, 364

Form Control Setup Resources, 372

Form Control Setup Rule, 367

Form Control Status, 350

Form Rule, 351, 362

Introduction, 350

Label, 358, 364

Low Code Customization, 350, 351

MBS_Ask_Password, 753

MBS_Check_Resource_Exists, 760

MBS_Control_Start, 754

MBS_Control_Start, 361

MBS_Control_Stop, 755

MBS_Control_Stop_All, 756

MBS_Control_Update_Dialog, 757

MBS_Control_Update_Expression, 758

MBS_Get_First_Window, 759

No Code Customization, 350, 351

Password Setup, 350

RegEx, 355, 369

Regular Expression, 355, 369

Resource, 362

Resource Filter, 350, 362, 372, 373, 374

Rule, 350, 362, 367

Rule Types, 351

Runtime Execute Setup, 350, 368

Script Purpose, 350, 368

Scrolling Window Rule, 353, 363

Virtual Fields, 350

Window Rule, 352, 363

Form Control Conditional Script, 350, 351, 352, 353, 354,

355, 356, 357, 358, 368, 369, 370, 371

Form Control Enabled for Users, 364, 365

Form Control ID, 359, 365, 367, 372, 381

Form Control Information, 360

Form Control Name, 361

Form Control Resource List, 382

Form Control Resource Tree, 382

Form Control Resources, 350, 366, 381, 438

Clear Button, 382

Exclude Button, 382

Form Control ID, 381

Form Control Resource List, 382

Form Control Resource Tree, 382

Options Menu, 383

Redisplay Button, 382

Reset Resource Data, 383

Form Control Rule Types, 351, 364

Form Control Setup, 359, 438

G P P O W E R T O O L S I N D E X

808 G P P O W E R T O O L S

Accelerator Key, 368

Add Button, 362

All Product Dictionaries, 372

All Users and Companies, 364, 366

Allow Multiple Resources (OR mode), 372

Alternate Mode, 373

Apply rule when password its entered correctly, 367

Apply to Fields Directly, 370

Base Settings, 350, 367, 372, 373

Color Selection, 370

Control Mode, 362

Dialog/Alert Type, 368

Disabled, 361

Display Message to screen using simple system dialog

instead of text box dialog, 368

DPS, 362

Duplicate Button, 365

Dynamics Process Server, 362

Enable in Web Client, 362

Entry, 368

Exclude Resources, 372

Exclude Selected Users and Companies rather than include

them, 364, 366

Execute Script in context of current form, 368

Expression, 368

Expression, 351

Expression, 369

Expression Mode, 369

Expression Usage Help, 369

Expression Usage Help Button, 369

Field Mode, 373

Field Name, 374

Field Position, 374

Form Control Enabled for Users, 364, 365

Form Control ID, 359, 365, 367, 372

Form Control Information, 360

Form Control Name, 361

Form Control Resources, 366

Form Control Setup Resources, 362

Form Control Setup Rule, 362

Form Control Status, 366

Form Control Tree, 362

Form Mode, 373

Form Name, 373

Ignore Case/Force Uppercase, 369

Include Modifier Added Fields, 374

Jump to rule number, 371

Key Field List, 368

Long Description, 361

Manual Start Only, 361

Message ID, 368

Minimize Log Entries, 361

Modified Mode, 373

Notes Button, 360

Options Menu, 366

Password ID, 351, 367

Product Name, 373

Project ID, 361

Release Notes, 360

Reset Button, 370

Resource Button, 366

Resource Sequence, 372

Reverse action based on Script condition, 370

Rule Description, 367, 372

Rule Disabled, 367

Rule Sequence, 367, 372

Rule Users Button, 364

Run rule delayed, 370

Save and Continue, 366

SBA, 362

Script ID, 351, 368

Select Button, 370

Selected Users and Companies, 364, 366

Service Based Architecture, 362

Status Button, 366

Stop processing rules, 371

Timestamp Button, 360

Use Regular Expression (RegEx), 369

Users Button, 365

Warning Message, 368

Warning Message, 351

Web Client, 362

Window Mode, 373

Window Name, 373

Window Position, 373

Form Control Setup Resources, 362, 372

Form Control Setup Rule, 362, 367

Form Control Status, 350, 366, 380, 438

Form Control Tree, 380

Redisplay Button, 380

Rule Sequence, 381

Trigger List, 380

Unregister Button, 380

Form Control Tools, 13, 16, 350, 359, 375, 380, 381

Form Control, 350

Form Control Resources, 381

Form Control Setup, 359

Form Control Status, 380

Password Setup, 375

Form Control Tree, 362, 380

Form Explorer, 120, 131, 263, 273, 439, 440

Back Up Button, 126

Expanded Fields, 127

Export Button, 126

Export Mode, 126

Hidden Forms, 126

OK Button, 126

Refresh Dictionary Resources, 127

Form Level, 258

Form Level Menu, 257, 258, 259

Form Menu Shortcut, 351, 362

Form Mode, 373

Form Name, 263, 342, 373

Form Rule, 351, 362

After Form Post Script, 352, 362

After Form Pre Script, 351, 362

Disable Form, 351, 362

Form Menu Shortcut, 351, 362

Password Form, 351, 362

Reject Form Post Script, 352, 362

Reject Form Pre Script, 351, 362

Format String Field Value, 356, 363

From Field, 65

Function, 109, 257, 259, 264

Function Name, 264

G
Generate Button, 103

Generate Dexterity Pass Through, 279, 296, 310

 G P P O W E R T O O L S I N D E X

 G P P O W E R T O O L S 809

Global

Level, 257

Level with Parameters, 257, 640, 641, 642, 644

Global Dex.ini, 60, 69, 178, 189, 267

Global Variable, 109

Global Variable Explorer, 125, 276

Back Up Button, 126

Export Button, 126

Export Mode, 126

OK Button, 126

Refresh Dictionary Resources, 127

Global Variables Explorer, 440

GO Statement, 305

Go To Button, 140, 142, 154

Goto Line …, 278, 294, 309, 319, 326

Goto Mode, 308

Gotos Button, 234, 307

GP Power Tools Administrator Password, 80, 177

GP Power Tools Area Page, 30, 42, 44, 46, 48, 58, 63, 67, 69,

97, 109, 130, 136, 140, 148, 152, 156, 161, 163, 197, 203,

208, 211, 219, 225, 227, 232, 233, 235, 248

GP Power Tools Feedback Survey, 48

GP Power Tools Logging Control, 28, 29

GP Power Tools Menus, 29

GP Power Tools Modules, 43

GP Power Tools Navigation Pane, 29

GP Power Tools Portal, 18

GP Power Tools Registration, 44

Automatically check for updated keys, 45

Contact Details, 44

Email, 45

Privacy Policy, 44

Product Key, 45

Trial Key, 45

Update Keys, 45

When Registration has failed or expired, 45

GP Power Tools Settings, 433

GP Power Tools Setup, 435, 662, 663

GP Power Tools Traces only, 56

GP Power Tools Update Check, 46

Automatically check for updates, 46

GPPTools.cnk, 20

GPPTools.log, 54, 73, 84, 179, 253, 632

GPPTools.pdf, 20

GPPTools.txt, 20

GPPTools_<User>_<Company>.log, 54, 73, 84, 179, 253,

632

GPPTools_<User>_<Company>_<Date>.log, 54, 84

H
Help Button, 271, 292, 324

Helper Button, 273, 292, 316, 324

Helper Function

MBS_Control_Start, 361

MBS_Control_Update_Dialog, 368

MBS_Control_Update_Expression, 369

MBS_Trigger_Update_Dialog, 266

MBS_Trigger_Update_Email, 266

Helper Function Assistant, 273, 292, 316, 324, 449, 762, 763,

764, 765, 767, 769, 770, 771, 772, 773, 775, 777

Adds Allowed, 273, 499, 501, 503, 505

Execute Change Script, 273, 471, 472, 473, 474, 475, 476,

477, 483, 484, 485, 486, 487, 488, 489

Key Fields, 273

Helper Functions, 270, 273, 292, 316, 324, 337, 449

Adds Allowed, 499, 501, 503, 505

DUOS, 584, 585, 586, 587, 645, 646, 647, 648

Execute Change Script, 471, 472, 473, 474, 475, 476, 477,

483, 484, 485, 486, 487, 488, 489

MBS_Add_Virtual_Field, 736

MBS_Add_Virtual_Field, 345

MBS_Add_Virtual_FieldAll, 741

MBS_Add_Virtual_FieldFormat, 738

MBS_Add_Virtual_FieldLine, 743

MBS_Add_Virtual_FieldLine, 346

MBS_Add_Virtual_FieldPrompt, 737

MBS_Add_Virtual_FieldPromptFormat, 740

MBS_Add_Virtual_FieldPromptLookup, 739

MBS_Arguments_Get_Count, 640

MBS_Arguments_Get_Type, 641

MBS_Arguments_Get_Value, 640, 641, 642

MBS_Arguments_Set_Value, 644

MBS_Ask_Dialog, 716

MBS_Ask_Dialog_Text, 717

MBS_Ask_Password, 753

MBS_Auto_Log, 632, 761

MBS_Check_Resource_Exists, 760

MBS_CompanyColorGetRGB, 731

MBS_Control_Start, 754

MBS_Control_Stop, 755

MBS_Control_Stop_All, 756

MBS_Control_Update_Dialog, 757

MBS_Control_Update_Expression, 758

MBS_Convert, 686

MBS_Convert_Boolean, 687

MBS_Convert_Currency, 688

MBS_Convert_Datetime, 690

MBS_Convert_Integer, 691

MBS_Convert_Long, 692

MBS_Convert_String, 693

MBS_Convert_Text, 694

MBS_Convert_Time, 695

MBS_Convert_VCurrency, 696

MBS_Copy_From_Clipboard, 733

MBS_Copy_From_Clipboard, 550, 551, 552, 553, 554,

555, 556, 557, 558, 559, 560, 561

MBS_Copy_From_Window, 521

MBS_Copy_From_Window_Modified, 523

MBS_Copy_To_Clipboard, 732

MBS_Copy_To_Window, 520

MBS_Copy_To_Window_Modified, 522

MBS_Date_Boolean, 689

MBS_DUOS_Del, 647

MBS_DUOS_DelAll, 648

MBS_DUOS_Get, 645, 646

MBS_DUOS_Set, 645, 646, 647, 648

MBS_Email_API, 577, 735, 792

MBS_Exit_After_Processes, 729

MBS_Expand_Virtual_Field_Window, 744

MBS_Expand_Virtual_Field_Window, 346

MBS_Export_SQL_Query_To_File, 562

MBS_Field_ParseText, 720

MBS_Form_Lookup, 658

MBS_Form_Lookup_Parameter, 660

MBS_Form_Lookup_Parameter2, 661

MBS_Form_Lookup2, 659

MBS_Get_Constant, 614

MBS_Get_Constant_Currency, 615

MBS_Get_Constant_Integer, 616

G P P O W E R T O O L S I N D E X

810 G P P O W E R T O O L S

MBS_Get_Constant_String, 617

MBS_Get_DateTime, 718

MBS_Get_Error_Message, 713

MBS_Get_Field_Reference, 745

MBS_Get_First_Window, 759

MBS_Get_Global, 625

MBS_Get_Global_Boolean, 626

MBS_Get_Global_Date, 627

MBS_Get_Global_Numeric, 628

MBS_Get_Global_String, 629

MBS_Get_Global_Text, 630

MBS_Get_Global_Time, 631

MBS_Get_Message, 710

MBS_Get_Message_Prompts, 711

MBS_Get_Table_Buffer_Value, 506

MBS_Get_Table_Buffer_Value_Boolean, 507

MBS_Get_Table_Buffer_Value_Date, 508

MBS_Get_Table_Buffer_Value_Numeric, 509

MBS_Get_Table_Buffer_Value_String, 510

MBS_Get_Table_Buffer_Value_Text, 511

MBS_Get_Table_Buffer_Value_Time, 512

MBS_Get_Table_Value1, 498

MBS_Get_Table_Value2, 500

MBS_Get_Table_Value3, 502

MBS_Get_Table_Value4, 504

MBS_Get_Virtual_Field, 746

MBS_Get_Virtual_Field_Caption, 749

MBS_Get_Virtual_Field_Tooltip, 751

MBS_Get_Window_Value, 455

MBS_Get_Window_Value_Boolean, 456

MBS_Get_Window_Value_Date, 457

MBS_Get_Window_Value_Exists, 462

MBS_Get_Window_Value_Modified, 463

MBS_Get_Window_Value_Modified_Boolean, 464

MBS_Get_Window_Value_Modified_Date, 465

MBS_Get_Window_Value_Modified_Exists, 470

MBS_Get_Window_Value_Modified_Numeric, 466

MBS_Get_Window_Value_Modified_String, 467

MBS_Get_Window_Value_Modified_Text, 468

MBS_Get_Window_Value_Modified_Time, 469

MBS_Get_Window_Value_Numeric, 458

MBS_Get_Window_Value_String, 459

MBS_Get_Window_Value_Text, 460

MBS_Get_Window_Value_Time, 461

MBS_getmsg, 712

MBS_Is_Trigger_Enabled, 728

MBS_Is_Trigger_Started, 727

MBS_Logging_Start, 633

MBS_Logging_Stop, 634

MBS_Map, 703

MBS_Map_Boolean, 704

MBS_Map_By_Field, 701

MBS_Map_By_Reference, 702

MBS_Map_Date, 705

MBS_Map_Numeric, 706

MBS_Map_String, 707

MBS_Map_Text, 708

MBS_Map_Time, 709

MBS_Map_Virtual_Field, 748

MBS_Memory_Del, 606

MBS_Memory_Del_Boolean, 607

MBS_Memory_Del_Currency, 608

MBS_Memory_Del_Date, 609

MBS_Memory_Del_Long, 610

MBS_Memory_Del_Reference, 613

MBS_Memory_Del_String, 611

MBS_Memory_Del_Time, 612

MBS_Memory_Get, 588, 598

MBS_Memory_Get_Boolean, 589, 599

MBS_Memory_Get_Currency, 590, 600

MBS_Memory_Get_Date, 591, 601

MBS_Memory_Get_Long, 592, 602

MBS_Memory_Get_Reference, 595, 596, 597, 605

MBS_Memory_Get_String, 593, 603

MBS_Memory_Get_Time, 594, 604

MBS_Memory_Set, 588, 598, 606

MBS_Memory_Set_boolean, 589

MBS_Memory_Set_Boolean, 599, 607

MBS_Memory_Set_Currency, 590, 600, 608

MBS_Memory_Set_Date, 591, 601, 609

MBS_Memory_Set_Field, 613

MBS_Memory_Set_Long, 592, 602, 610

MBS_Memory_Set_Reference, 595, 605, 613

MBS_Memory_Set_String, 593, 603, 611

MBS_Memory_Set_Table, 596, 597, 605, 613

MBS_Memory_Set_Time, 594, 604, 612

MBS_Net_Execute, 578, 583

MBS_Param_Del, 586

MBS_Param_DelAll, 587

MBS_Param_Get, 584, 585, 761

MBS_Param_Set, 584, 585, 586, 587, 761

MBS_Parameter_Boolean, 669

MBS_Parameter_Currency, 668

MBS_Parameter_Date, 670

MBS_Parameter_Get_Boolean, 683

MBS_Parameter_Get_Currency, 682

MBS_Parameter_Get_Date, 684

MBS_Parameter_Get_Number, 681

MBS_Parameter_Get_String, 680

MBS_Parameter_Get_Time, 685

MBS_Parameter_Load, 672

MBS_Parameter_Number, 667

MBS_Parameter_Open, 673

MBS_Parameter_Placeholder, 665

MBS_Parameter_Set_Boolean, 677

MBS_Parameter_Set_Currency, 676

MBS_Parameter_Set_Date, 678

MBS_Parameter_Set_Number, 675

MBS_Parameter_Set_String, 674

MBS_Parameter_Set_Time, 679

MBS_Parameter_String, 666

MBS_Parameter_Time, 671

MBS_Project_Start, 662

MBS_Project_Stop, 663

MBS_Pull_Window_Focus, 497, 701, 702, 703, 704, 705,

706, 707, 708, 709

MBS_Return_By_Field, 697

MBS_Return_By_Field2, 698

MBS_Return_By_Reference, 699

MBS_Return_By_Reference2, 700

MBS_Run_Window_Value, 495

MBS_Run_Window_Value_Modified, 496

MBS_Runtime_Execute, 534, 580, 584, 585, 586, 587,

588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598,

599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609,

610, 611, 612, 613

MBS_Runtime_Execute_After_Background, 537

MBS_Runtime_Execute_Background, 535

MBS_Runtime_Execute_Delayed, 536

MBS_Runtime_Execute_Modified, 538

 G P P O W E R T O O L S I N D E X

 G P P O W E R T O O L S 811

MBS_Runtime_Execute_Modified_After_Background,

541

MBS_Runtime_Execute_Modified_Background, 539

MBS_Runtime_Execute_Modified_Delayed, 540

MBS_Script_Load_Dex, 580

MBS_Script_Load_Net, 583

MBS_Script_Load_SQL, 581, 582

MBS_Script_Load_SQL_DB, 581, 582

MBS_Script_Substitute, 664

MBS_Security_Form_Check, 722

MBS_Set_Global, 618

MBS_Set_Global_Boolean, 619

MBS_Set_Global_Date, 620

MBS_Set_Global_Numeric, 621

MBS_Set_Global_String, 622

MBS_Set_Global_Text, 623

MBS_Set_Global_Time, 624

MBS_Set_Table_Buffer_Value, 513

MBS_Set_Table_Buffer_Value_Boolean, 514

MBS_Set_Table_Buffer_Value_Date, 515

MBS_Set_Table_Buffer_Value_Numeric, 516

MBS_Set_Table_Buffer_Value_String, 517

MBS_Set_Table_Buffer_Value_Text, 518

MBS_Set_Table_Buffer_Value_Time, 519

MBS_Set_Table_Value1, 499

MBS_Set_Table_Value2, 501

MBS_Set_Table_Value3, 503

MBS_Set_Table_Value4, 505

MBS_Set_Virtual_Field, 747

MBS_Set_Virtual_Field_Caption, 750

MBS_Set_Virtual_Field_Tooltip, 752

MBS_Set_Window_Value, 471

MBS_Set_Window_Value_Boolean, 472

MBS_Set_Window_Value_Date, 473

MBS_Set_Window_Value_Enabled, 480

MBS_Set_Window_Value_Focus, 478

MBS_Set_Window_Value_Focus_Immediate, 479

MBS_Set_Window_Value_Modified, 483

MBS_Set_Window_Value_Modified_Boolean, 484

MBS_Set_Window_Value_Modified_Date, 485

MBS_Set_Window_Value_Modified_Enabled, 492

MBS_Set_Window_Value_Modified_Focus, 490

MBS_Set_Window_Value_Modified_Focus_Immediate,

491

MBS_Set_Window_Value_Modified_Numeric, 486

MBS_Set_Window_Value_Modified_ReadOnly, 493

MBS_Set_Window_Value_Modified_String, 487

MBS_Set_Window_Value_Modified_Text, 488

MBS_Set_Window_Value_Modified_Time, 489

MBS_Set_Window_Value_Modified_Visible, 494

MBS_Set_Window_Value_Numeric, 474

MBS_Set_Window_Value_ReadOnly, 481

MBS_Set_Window_Value_String, 475

MBS_Set_Window_Value_Text, 476

MBS_Set_Window_Value_Time, 477

MBS_Set_Window_Value_Visible, 482

MBS_Show_Desktop_Alert, 734

MBS_Show_Dialog, 714

MBS_Show_Dialog_Text, 715

MBS_SQL_Check_Exists, 543, 546, 548, 550, 551, 552,

553, 554, 555, 556, 557, 558, 559, 560, 561, 581

MBS_SQL_Execute, 543, 546, 548, 550, 551, 552, 553,

554, 555, 556, 557, 558, 559, 560, 561, 582

MBS_SQL_Export_Data, 577

MBS_SQL_Get_Data, 548, 550, 551, 552, 553, 554, 555,

556, 557, 558, 559, 560, 561

MBS_SQL_Goto_Close, 574

MBS_SQL_Goto_Get_Data, 573

MBS_SQL_Lookup, 652

MBS_SQL_Lookup_Parameter, 654

MBS_SQL_Lookup_Parameter_Validate, 657

MBS_SQL_Lookup_Parameter2, 655

MBS_SQL_Lookup_Validate, 656

MBS_SQL_Lookup2, 653

MBS_SQL_Parse_Data, 550

MBS_SQL_Parse_Data_Boolean, 551

MBS_SQL_Parse_Data_Currency, 552

MBS_SQL_Parse_Data_Date, 553

MBS_SQL_Parse_Data_Datetime, 554

MBS_SQL_Parse_Data_Integer, 555

MBS_SQL_Parse_Data_Long, 556

MBS_SQL_Parse_Data_Reset, 561

MBS_SQL_Parse_Data_String, 557

MBS_SQL_Parse_Data_Text, 558

MBS_SQL_Parse_Data_Time, 559

MBS_SQL_Parse_Data_VCurrency, 560

MBS_SQL_Results, 563

MBS_SQL_Results_Close, 567

MBS_SQL_Results_Close2, 572

MBS_SQL_Results_Goto, 565

MBS_SQL_Results_Goto2, 570

MBS_SQL_Results_Immediate, 564

MBS_SQL_Results_Immediate_Goto, 566

MBS_SQL_Results_Immediate_Goto2, 571

MBS_SQL_Results_Immediate2, 569

MBS_SQL_Results2, 568

MBS_SQL_Set_Database, 542

MBS_SQL_Sort_Get, 575

MBS_SQL_Sort_Set, 576

MBS_subtext, 721

MBS_Switch_Company, 730

MBS_Table_Buffer_Clear, 532

MBS_Table_Buffer_Fill, 533

MBS_Table_Buffer_Get, 524

MBS_Table_Buffer_Range, 524, 525, 526, 527, 528, 532,

533

MBS_Table_Buffer_Release, 527

MBS_Table_Buffer_Remove, 526

MBS_Table_Buffer_Save, 525

MBS_Token, 719

MBS_Trigger_Disable, 723

MBS_Trigger_DisableSingle, 285, 725

MBS_Trigger_Enable, 724

MBS_Trigger_EnableSingle, 285, 726

MBS_Trigger_Start, 635

MBS_Trigger_Stop, 636

MBS_Trigger_Update_Dialog, 637

MBS_Trigger_Update_Email, 638, 639

MBS_UserAddInfo_Get, 649

MBS_UserAddInfo_GetPrompt, 651

MBS_UserAddInfo_Set, 650

SY_User_Object_Store, 584, 585, 586, 587, 645, 646, 647,

648

SY90000, 584, 585, 586, 587, 645, 646, 647, 648

Hidden About Window, 251

Hidden Forms, 126, 206

Hide, 199

Hide Excluded Tables, 418, 419

Hide Field, 355, 363

G P P O W E R T O O L S I N D E X

812 G P P O W E R T O O L S

Hide the Homepage Intelligent Cloud Insights website

entirely, 225

Home Page, 28, 30, 59, 63, 67

Quick Links, 28, 30, 59, 63, 67

Hompage

Connect Section, 225, 442

Intelligent Cloud Insights Section, 225, 442

How to Setup, 246

HTML Table, 126, 145, 150, 154, 162, 164, 210, 228, 234,

307

I
If less than X MB, 266

Ignore Case/Force Uppercase, 369

Import Button, 97, 137, 241, 389

Import Path, 387, 389, 390

Import Settings File, 97

Import Utility, 109, 136

Inactive, 141

Include, 162

Include Current Launch File, 60, 178, 268

Include Dex.ini Settings File, 60, 178, 267

Include info for all databases, 60, 178, 268

Include Modifier Added Fields, 374

Include sessions for all user types instead of just Full user,

212

Include User Dex.ini Settings File, 60, 178, 268

Include zipped log files, 266

Individual Logging Control, 55, 83

Info, 43

Info Button, 61, 189, 196

Insert Button, 272, 273, 292, 304, 316, 323, 324

Insert Helper Function, 273, 292, 316, 324

Adds Allowed, 273

Execute Change Script, 273

Key Fields, 273

Installation, 19, 20

Additional Launch File Installer, 22, 433

Launch File, 22

Integration Manager, 286

Redraw UI when importing, 78

Show Dynamics while importing, 78

Intelligent Cloud Insights Section, 225, 442

Intelligent Cloud Insights Section Website Description, 226

Intelligent Cloud Insights Section Website Title, 226

Intelligent Cloud Insights Section Website URL, 226

Introduction, 13, 246, 345, 350

Issue Reject Record, 267

Issue Reject Script, 267

J
Jump to rule number, 371

K
Keep Focus on Field, 267

Keep Table Data for SQL Maintenance, 432

KeepTemplateTempFiles, 76, 446

Key Field List, 368

Key Fields, 273

L
Label, 358, 364

Large SQL Profile Trace, 83, 284

Launch Configuration, 215, 216

Launch File, 22, 31, 42, 60, 72, 193, 194, 196, 197, 201, 215,

268

Launch File Configuration, 215, 216, 217, 434, 436

Add Button, 215

Advanced Security, 218

Bottom Button, 216

Delete Button, 216

Do not update the Launch File automatically, 217

Down Button, 216

Dynamics.set, 215

Launch File, 215

Launch File Configuration Additional Files, 216

Launch File Configuration Preview, 217

Launch File Rule, 215, 216

Preview, 217

Preview Button, 217

Rule Fields, 216

Rule List, 215

Smartlist, 218

Top Button, 216

Up Button, 216

Launch File Configuration Additional Files, 216

Launch File Configuration Preview, 217

Launch File Rule, 215, 216

Legend, 397

Legend Button, 142, 145, 157, 397

Letters, 109, 136

License Management, 183

License Tab, 183

License Management, 183

License.doc, 20

Limit results set to fixed number of lines, 302

Limited Users, 141

Link to Dexterity Script Debugger, 348

Linked Table, 112

List, 304

Lock Field, 355, 363

Lock Scrolling Window, 353, 363

Log, 189

Log Elapsed Times, 424

Log File, 253

Logging Options, 55, 83

Logging Password, 55, 82

Logging Settings, 36, 41, 52, 53, 54, 55, 56, 82, 83, 84, 86,

87, 89, 90, 91, 92, 439

Administrator Controlled Shared Folder Location, 82

Administrator Controlled Shared Folder Location for logs

and export files, 82

Authentication Mode, 86

Capture

Maximum email attachment file size for zipped log

files, 84

Number of days to keep logs, 84

Rename log each day, 84

Capture Dexterity Script Log, 83

Capture Dexterity Script Profile, 83

Capture Macro Recording, 83

Capture SQL Log, 83

Capture SQL Profile Trace, 83

 G P P O W E R T O O L S I N D E X

 G P P O W E R T O O L S 813

Copy SQL Profile Trace files to Logs and Export files

location, 92

Create SQL Profile Trace SQL Components, 92

Edit SQL Profile Trace Settings, 84

Enable Individual Logging Modes, 55

Enable Invdividual Logging Modes, 83

Folder on local drive on SQL Server, 91

Logging Password, 55, 82

Macro Recording Settings, 41

Maximum number of Trace files, 90

Maximum Trace file size, 90

Multi User Authentication Mode, 86

Process Multi User Mode SQL Server Action, 89

Process Single User Mode SQL Server Action, 89

Remove SQL Profile Trace SQL Components, 92

Single User Authentication Mode, 86

SQL Profile Trace Mode, 83

SQL Profile Trace Settings, 36, 52, 56, 83, 84, 85

UNC Network shared path to above Folder, 92

When Manual Logging is stopped, 83

Windows Administrator User ID, 87

Login, 174, 175

Login Event, 258

Login Limits, 211, 436

Active Profile, 211, 212

Always allow access to this Company, 213

Default maximum sessions per User, 212

Duplicate Button, 213

Exempt user from system maximum sessions limit, 213

Include sessions for all user types instead of just Full user,

212

Maximum number of sessions for this Company, 213

Override maximum sessions per User, 213

Profile ID, 212, 213

Profile Name, 212

Reserve a license for user, 212

Login Remember User, 105

Login/Logout Event, 257, 258, 259

Logout Event, 258

Long Description, 232, 233, 235, 238, 256, 289, 301, 314,

361

Low Code Customization, 350, 351

M
Macro Play Fast, 347

Macro Recording, 41, 52, 83, 285

Macro Recording Configuration, 41

Macro Recording Configuration, 41

Macro.mac, 52, 54

Macro_<User>_<Company>_<Date>_<Time>.mac, 54

Maintain Home Page Settings, 106

Making Space for Virtual Fields, 346

Manifest File, 78

Manual Logging Mode, 52, 53, 71, 82, 83, 84, 252, 633, 634

Manual Start Only, 361

MAPI Compliant Client, 95

Mark All, 132

Mark All Button, 61, 139, 151, 162, 164, 204, 414, 421, 430

Mark All Buttons, 419

Mark To Delete Button, 262

Mark User Inactive, 106

Mask Field Value, 356, 363

Mass Delete Button, 428

Max. Users Button, 209

Maximum email attachment file size for zipped log files, 84

Maximum number of sessions for this Company, 213

Maximum number of Trace files, 90

Maximum Trace file size, 90

Maximum Users, 209

MaxSWScrollbarSize, 78, 446

MBS_Add_Virtual_Field, 736

MBS_Add_Virtual_Field, 345

MBS_Add_Virtual_FieldAll, 741

MBS_Add_Virtual_FieldFormat, 738

MBS_Add_Virtual_FieldLine, 743

MBS_Add_Virtual_FieldLine, 346

MBS_Add_Virtual_FieldPrompt, 737

MBS_Add_Virtual_FieldPromptFormat, 740

MBS_Add_Virtual_FieldPromptLookup, 739

MBS_Arguments_Get_Count, 640

MBS_Arguments_Get_Type, 641

MBS_Arguments_Get_Value, 640, 641, 642

MBS_Arguments_Set_Value, 644

MBS_Ask_Dialog, 716

MBS_Ask_Dialog_Text, 717

MBS_Ask_Password, 753

MBS_Auto_Log, 632, 761

MBS_Check_Resource_Exists, 760

MBS_CompanyColorGet, 796

MBS_CompanyColorGetRGB, 797

MBS_CompanyColorGetRGB, 731

MBS_Control_Start, 754

MBS_Control_Start, 361

MBS_Control_Stop, 755

MBS_Control_Stop_All, 756

MBS_Control_Update_Dialog, 368, 757

MBS_Control_Update_Expression, 369, 758

MBS_Convert, 686

MBS_Convert_Boolean, 687

MBS_Convert_Currency, 688

MBS_Convert_Date, 689

MBS_Convert_Datetime, 690

MBS_Convert_Integer, 691

MBS_Convert_Long, 692

MBS_Convert_String, 693

MBS_Convert_Text, 694

MBS_Convert_Time, 695

MBS_Convert_VCurrency, 696

MBS_Copy_From_Clipboard, 733

MBS_Copy_From_Clipboard, 550, 551, 552, 553, 554, 555,

556, 557, 558, 559, 560, 561

MBS_Copy_From_Window, 521

MBS_Copy_From_Window_Modified, 523

MBS_Copy_To_Clipboard, 732

MBS_Copy_To_Window, 520

MBS_Copy_To_Window_Modified, 522

MBS_Debug_Automate File, 440

MBS_Debug_Automate_Script, 440

MBS_Debug_Automate_Status, 441

MBS_Debug_AutoOpen, 71, 433

MBS_Debug_Break, 348, 442

MBS_Debug_CaptureSettings, 442

MBS_Debug_CompanyFilter, 198, 202, 441

MBS_Debug_CompanySwitchWidth, 174, 434

MBS_Debug_ConfigurationOverride, 189, 434

MBS_Debug_DexIniCheck, 442

MBS_Debug_DisableScreenOutputMemory, 76, 440

MBS_Debug_DisableSplitters, 441

MBS_Debug_DisableTimedProcessRestore, 443

G P P O W E R T O O L S I N D E X

814 G P P O W E R T O O L S

MBS_Debug_DisableWebsiteSettings, 226, 442

MBS_Debug_ExportCompatibilityWarning, 243, 443

MBS_Debug_HideGames, 443

MBS_Debug_Install, 23, 433

MBS_Debug_LastRunSystem, 441

MBS_Debug_LastRunUser, 441

MBS_Debug_LaunchConfigurationOverride, 217, 434

MBS_Debug_LogAppDetails, 73, 434

MBS_Debug_LogListPath, 343, 344, 442

MBS_Debug_LogOnStartup, 71, 433

MBS_Debug_LogWinData, 441

MBS_Debug_LookupPosition, 442

MBS_Debug_NamesUseClipboard, 442

MBS_Debug_Path, 71, 82, 433

MBS_Debug_ProductVersionOverride, 228, 442

MBS_Debug_RuntimeCheck, 433

MBS_Debug_SetupMode, 70, 433

MBS_Debug_ShowRuntime, 434

MBS_Debug_SkipVersionChecks, 441

MBS_Debug_UpdateLastUserOnExit, 73, 434

MBS_Debug_UserMessageReplace, 185, 443

MBS_Debug_ValidateLaunchFile, 442

MBS_Debug_VBADisableReset, 441

MBS_Debug_VBADisableReset, 195

MBS_Debug_Version, 433

MBS_Debug_VSTDisable, 441

MBS_Debug_VSTDisable, 195

MBS_Debug_VSTDisableReset, 441

MBS_Debug_VSTDisableReset, 195

MBS_Debug_WCBackground, 442

MBS_Debug_WinActivityLog, 436

MBS_Debug_WinActivityLogDetail, 436

MBS_Debug_WinActivityLogMaxUser, 436

MBS_Debug_WinAdminSettings, 439

MBS_Debug_WinCalculator, 440

MBS_Debug_WinCompanyFilter, 436

MBS_Debug_WinConfigSettings, 439

MBS_Debug_WinConfigurationExportImport, 438

MBS_Debug_WinConfigurationMaintenance, 438

MBS_Debug_WinConstantExplorer, 440

MBS_Debug_WinCopyUserSettings, 437

MBS_Debug_WinDAGControl, 440

MBS_Debug_WinDatabaseSpaceRecovery, 437

MBS_Debug_WinDatabaseValidation, 437

MBS_Debug_WinDebugger, 434

MBS_Debug_WinDebuggerSetup, 435

MBS_Debug_WinDebuggerStatus, 435

MBS_Debug_WinDictionaryControl, 436

MBS_Debug_WinEmailSettings, 439

MBS_Debug_WinFieldLookup, 439

MBS_Debug_WinFormControlResources, 438

MBS_Debug_WinFormControlSetup, 438

MBS_Debug_WinFormControlStatus, 438

MBS_Debug_WinFormExplorer, 440

MBS_Debug_WinGlobalExplorer, 440

MBS_Debug_WinKeyLookup, 440

MBS_Debug_WinLaunchFileConfig, 436

MBS_Debug_WinLoggingSettings, 439

MBS_Debug_WinLoginLimits, 436

MBS_Debug_WinLoginMaintenance, 437

MBS_Debug_WinMenuExplorer, 439

MBS_Debug_WinMessagesSetup, 438

MBS_Debug_WinNetExecute, 438

MBS_Debug_WinNetExecuter, 438

MBS_Debug_WinNoteFixUtility, 437

MBS_Debug_WinObjectExplorer, 439

MBS_Debug_WinParameterMaintenance, 438

MBS_Debug_WinPasswordSetup, 438

MBS_Debug_WinProductSelection, 436

MBS_Debug_WinProductVersion, 436

MBS_Debug_WinProjectSetup, 437

MBS_Debug_WinReportExplorer, 439

MBS_Debug_WinResourceExplorer, 439

MBS_Debug_WinResourceFinder, 435

MBS_Debug_WinResourceInformation, 435

MBS_Debug_WinRuntimeExecute, 437

MBS_Debug_WinRuntimeExecuter, 437

MBS_Debug_WinScreenOutput, 76, 440

MBS_Debug_WinScreenShot, 438

MBS_Debug_WinScriptExplorer, 439

MBS_Debug_WinSecurityAnalyzer, 435

MBS_Debug_WinSecurityDeny, 435

MBS_Debug_WinSecurityEnhanced, 435

MBS_Debug_WinSecurityHide, 436

MBS_Debug_WinSecurityInfo, 435

MBS_Debug_WinSecurityInfoResource, 435

MBS_Debug_WinSecurityLog, 435

MBS_Debug_WinSecurityLogDetail, 435

MBS_Debug_WinSecurityLogResource, 435

MBS_Debug_WinSecurityProfiler, 435

MBS_Debug_WinSendEmail, 439

MBS_Debug_WinSnippetSetup, 438

MBS_Debug_WinSQLExecute, 437

MBS_Debug_WinSQLExecuter, 437

MBS_Debug_WinSQLResults, 437

MBS_Debug_WinSQLTriggerControl, 437

MBS_Debug_WinTableExplorer, 439

MBS_Debug_WinTableLookup, 439

MBS_Debug_WinTriggerListMaintenance, 438

MBS_Debug_WinWebsiteSettings, 436

MBS_Debug_WinWindowMemory, 436

MBS_Debug_WinXMLTableExport, 436

MBS_Debug_WinXMLTableImport, 437

MBS_DUOS_Del, 647

MBS_DUOS_DelAll, 648

MBS_DUOS_Get, 645, 646

MBS_DUOS_Set, 645, 646, 647, 648

MBS_Email_API, 577, 735, 792

MBS_Exit_After_Processes, 729

MBS_Expand_Virtual_Field_Window, 744

MBS_Expand_Virtual_Field_Window, 346

MBS_Export_SQL_Query_To_File, 562

MBS_Field_ParseText, 720

MBS_Form_Lookup, 658

MBS_Form_Lookup_Parameter, 660

MBS_Form_Lookup_Parameter2, 661

MBS_Form_Lookup2, 659

MBS_Get_Constant, 614

MBS_Get_Constant_Currency, 615

MBS_Get_Constant_Integer, 616

MBS_Get_Constant_String, 617

MBS_Get_DateTime, 718

MBS_Get_Error_Message, 713

MBS_Get_Field_Reference, 745

MBS_Get_First_Window, 759

MBS_Get_Global, 625

MBS_Get_Global_Boolean, 626

MBS_Get_Global_Date, 627

MBS_Get_Global_Numeric, 628

MBS_Get_Global_String, 629

 G P P O W E R T O O L S I N D E X

 G P P O W E R T O O L S 815

MBS_Get_Global_Text, 630

MBS_Get_Global_Time, 631

MBS_Get_Message, 710

MBS_Get_Message_Prompts, 711

MBS_Get_Table_Buffer_Value, 506

MBS_Get_Table_Buffer_Value_Boolean, 507

MBS_Get_Table_Buffer_Value_Date, 508

MBS_Get_Table_Buffer_Value_Numeric, 509

MBS_Get_Table_Buffer_Value_String, 510

MBS_Get_Table_Buffer_Value_Text, 511

MBS_Get_Table_Buffer_Value_Time, 512

MBS_Get_Table_Value1, 498

MBS_Get_Table_Value2, 500

MBS_Get_Table_Value3, 502

MBS_Get_Table_Value4, 504

MBS_Get_Virtual_Field, 746

MBS_Get_Virtual_Field_Caption, 749

MBS_Get_Virtual_Field_Tooltip, 751

MBS_Get_Window_Value, 455

MBS_Get_Window_Value_Boolean, 456

MBS_Get_Window_Value_Date, 457

MBS_Get_Window_Value_Exists, 462

MBS_Get_Window_Value_Modified, 463

MBS_Get_Window_Value_Modified_Boolean, 464

MBS_Get_Window_Value_Modified_Date, 465

MBS_Get_Window_Value_Modified_Exists, 470

MBS_Get_Window_Value_Modified_Numeric, 466

MBS_Get_Window_Value_Modified_String, 467

MBS_Get_Window_Value_Modified_Text, 468

MBS_Get_Window_Value_Modified_Time, 469

MBS_Get_Window_Value_Numeric, 458

MBS_Get_Window_Value_String, 459

MBS_Get_Window_Value_Text, 460

MBS_Get_Window_Value_Time, 461

MBS_getmsg, 712

MBS_Is_Trigger_Enabled, 728

MBS_Is_Trigger_Started, 727

MBS_Logging_Start, 633

MBS_Logging_Stop, 634

MBS_Map, 703

MBS_Map_Boolean, 704

MBS_Map_By_Field, 701

MBS_Map_By_Reference, 702

MBS_Map_Date, 705

MBS_Map_Numeric, 706

MBS_Map_String, 707

MBS_Map_Text, 708

MBS_Map_Time, 709

MBS_Map_Virtual_Field, 748

MBS_Memory_Del, 606

MBS_Memory_Del_Boolean, 607

MBS_Memory_Del_Currency, 608

MBS_Memory_Del_Date, 609

MBS_Memory_Del_Long, 610

MBS_Memory_Del_Reference, 613

MBS_Memory_Del_String, 611

MBS_Memory_Del_Time, 612

MBS_Memory_Get, 588, 598

MBS_Memory_Get_Boolean, 589, 599

MBS_Memory_Get_Currency, 600

MBS_Memory_Get_Curreny, 590

MBS_Memory_Get_Date, 591, 601

MBS_Memory_Get_Long, 592, 602

MBS_Memory_Get_Reference, 595, 596, 597, 605

MBS_Memory_Get_String, 593, 603

MBS_Memory_Get_Time, 594, 604

MBS_Memory_Set, 588, 598, 606

MBS_Memory_Set_Boolean, 589, 599, 607

MBS_Memory_Set_Currency, 590, 600, 608

MBS_Memory_Set_Date, 591, 601, 609

MBS_Memory_Set_Field, 597, 613

MBS_Memory_Set_Long, 592, 602, 610

MBS_Memory_Set_Reference, 595, 605, 613

MBS_Memory_Set_String, 593, 603, 611

MBS_Memory_Set_Table, 596, 605, 613

MBS_Memory_Set_Time, 594, 604, 612

MBS_Net_Execute, 578, 583

MBS_Param_Del, 586

MBS_Param_DelAll, 587

MBS_Param_Get, 584, 585, 761

MBS_Param_Set, 584, 585, 586, 587, 761

MBS_Parameter_Boolean, 669

MBS_Parameter_Currency, 668

MBS_Parameter_Date, 670

MBS_Parameter_Get_Boolean, 683

MBS_Parameter_Get_Currency, 682

MBS_Parameter_Get_Date, 684

MBS_Parameter_Get_Number, 681

MBS_Parameter_Get_String, 680

MBS_Parameter_Get_Time, 685

MBS_Parameter_Load, 672

MBS_Parameter_Number, 667

MBS_Parameter_Open, 673

MBS_Parameter_Placeholder, 665

MBS_Parameter_Set_Boolean, 677

MBS_Parameter_Set_Currency, 676

MBS_Parameter_Set_Date, 678

MBS_Parameter_Set_Number, 675

MBS_Parameter_Set_String, 674

MBS_Parameter_Set_Time, 679

MBS_Parameter_String, 666

MBS_Parameter_Time, 671

MBS_Project_Start, 662

MBS_Project_Stop, 663

MBS_Pull_Window_Focus, 497, 701, 702, 703, 704, 705,

706, 707, 708, 709

MBS_Return_By_Field, 697

MBS_Return_By_Field2, 698

MBS_Return_By_Reference, 699

MBS_Return_By_Reference2, 700

MBS_Run_Window_Value, 495

MBS_Run_Window_Value_Modified, 496

MBS_Runtime_Execute, 534, 580, 584, 585, 586, 587, 588,

589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600,

601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612,

613

MBS_Runtime_Execute_After_Background, 537

MBS_Runtime_Execute_Background, 535

MBS_Runtime_Execute_Delayed, 536

MBS_Runtime_Execute_Modified, 538

MBS_Runtime_Execute_Modified_After_Background, 541

MBS_Runtime_Execute_Modified_Background, 539

MBS_Runtime_Execute_Modified_Delayed, 540

MBS_Script_Load_Dex, 580

MBS_Script_Load_Net, 583

MBS_Script_Load_SQL, 581, 582

MBS_Script_Load_SQL_DB, 581, 582

MBS_Script_Substitute, 664

MBS_Security_Form_Check, 722

MBS_Set_Global, 618

G P P O W E R T O O L S I N D E X

816 G P P O W E R T O O L S

MBS_Set_Global_Boolean, 619

MBS_Set_Global_Date, 620

MBS_Set_Global_Numeric, 621

MBS_Set_Global_String, 622

MBS_Set_Global_Text, 623

MBS_Set_Global_Time, 624

MBS_Set_Table_Buffer_Value, 513

MBS_Set_Table_Buffer_Value_Boolean, 514

MBS_Set_Table_Buffer_Value_Date, 515

MBS_Set_Table_Buffer_Value_Numeric, 516

MBS_Set_Table_Buffer_Value_String, 517

MBS_Set_Table_Buffer_Value_Text, 518

MBS_Set_Table_Buffer_Value_Time, 519

MBS_Set_Table_Value1, 499

MBS_Set_Table_Value2, 501

MBS_Set_Table_Value3, 503

MBS_Set_Table_Value4, 505

MBS_Set_Virtual_Field, 747

MBS_Set_Virtual_Field_Caption, 750

MBS_Set_Virtual_Field_Tooltip, 752

MBS_Set_Window_Value, 471

MBS_Set_Window_Value_Boolean, 472

MBS_Set_Window_Value_Date, 473

MBS_Set_Window_Value_Enabled, 480

MBS_Set_Window_Value_Focus, 478

MBS_Set_Window_Value_Focus_Immediate, 479

MBS_Set_Window_Value_Modified, 483

MBS_Set_Window_Value_Modified_Boolean, 484

MBS_Set_Window_Value_Modified_Date, 485

MBS_Set_Window_Value_Modified_Enabled, 492

MBS_Set_Window_Value_Modified_Focus, 490

MBS_Set_Window_Value_Modified_Focus_Immediate, 491

MBS_Set_Window_Value_Modified_Numeric, 486

MBS_Set_Window_Value_Modified_ReadOnly, 493

MBS_Set_Window_Value_Modified_String, 487

MBS_Set_Window_Value_Modified_Text, 488

MBS_Set_Window_Value_Modified_Time, 489

MBS_Set_Window_Value_Modified_Visible, 494

MBS_Set_Window_Value_Numeric, 474

MBS_Set_Window_Value_ReadOnly, 481

MBS_Set_Window_Value_String, 475

MBS_Set_Window_Value_Text, 476

MBS_Set_Window_Value_Time, 477

MBS_Set_Window_Value_Visible, 482

MBS_Show_Desktop_Alert, 734

MBS_Show_Dialog, 714

MBS_Show_Dialog_Text, 715

MBS_SQL_Check_Exists, 543, 546, 548, 550, 551, 552, 553,

554, 555, 556, 557, 558, 559, 560, 561, 581

MBS_SQL_Execute, 543, 546, 548, 550, 551, 552, 553, 554,

555, 556, 557, 558, 559, 560, 561, 582

MBS_SQL_Export_Data, 577

MBS_SQL_Get_Data, 548, 550, 551, 552, 553, 554, 555,

556, 557, 558, 559, 560, 561

MBS_SQL_Goto_Close, 574

MBS_SQL_Goto_Get_Data, 573

MBS_SQL_Lookup, 652

MBS_SQL_Lookup_Parameter, 654

MBS_SQL_Lookup_Parameter_Validate, 657

MBS_SQL_Lookup_Parameter2, 655

MBS_SQL_Lookup_Validate, 656

MBS_SQL_Lookup2, 653

MBS_SQL_Parse_Data, 550

MBS_SQL_Parse_Data_Boolean, 551

MBS_SQL_Parse_Data_Currency, 552

MBS_SQL_Parse_Data_Date, 553

MBS_SQL_Parse_Data_Datetime, 554

MBS_SQL_Parse_Data_Integer, 555

MBS_SQL_Parse_Data_Long, 556

MBS_SQL_Parse_Data_Reset, 561

MBS_SQL_Parse_Data_String, 557

MBS_SQL_Parse_Data_Text, 558

MBS_SQL_Parse_Data_Time, 559

MBS_SQL_Parse_Data_VCurrency, 560

MBS_SQL_Results, 563

MBS_SQL_Results_Close, 567

MBS_SQL_Results_Close2, 572

MBS_SQL_Results_Goto, 565

MBS_SQL_Results_Goto2, 570

MBS_SQL_Results_Immediate, 564

MBS_SQL_Results_Immediate_Goto, 566

MBS_SQL_Results_Immediate_Goto2, 571

MBS_SQL_Results_Immediate2, 569

MBS_SQL_Results2, 568

MBS_SQL_Set_Database, 542

MBS_SQL_Sort_Get, 575

MBS_SQL_Sort_Set, 576

MBS_subtext, 721

MBS_Switch_Company, 730

MBS_Table_Buffer_Clear, 532

MBS_Table_Buffer_Fill, 533

MBS_Table_Buffer_Get, 524

MBS_Table_Buffer_Range, 524, 525, 526, 527, 528, 532,

533

MBS_Table_Buffer_Release, 527

MBS_Table_Buffer_Remove, 526

MBS_Table_Buffer_Save, 525

MBS_Token, 719

MBS_Trigger_Disable, 723

MBS_Trigger_DisableSingle, 285, 725

MBS_Trigger_Enable, 724

MBS_Trigger_EnableSingle, 285, 726

MBS_Trigger_Start, 635

MBS_Trigger_Stop, 636

MBS_Trigger_Update_Dialog, 266, 637

MBS_Trigger_Update_Email, 266, 638, 639

MBS_UserAddInfo_Get, 649

MBS_UserAddInfo_GetPrompt, 651

MBS_UserAddInfo_Set, 650

MBS_WindowPositionCheck, 793

MBS_WindowPositionMemory, 794

MBS_WindowPositionMemoryResize, 795

Medium SQL Profile Trace, 83, 284

Menu Command Details, 147

Menu Entry, 264, 368

Menu Explorer, 121, 131, 147, 439

Back Up Button, 126

Comma Delimited, 126

Expanded Fields, 127

Export Button, 126

Export Mode, 126

Filter Menus, 147

HTML Table, 126

Menu Command Details, 147

OK Button, 126

Tab Delimited, 126

Menu Exporer

Missing Resources, 126

Message, 271

Message, 109

 G P P O W E R T O O L S I N D E X

 G P P O W E R T O O L S 817

Message ID, 266, 337, 339, 368

Message List, 339

Message Setup

Message ID, 339

Messages Information, 339

Messages Setup, 236, 266, 337, 368, 438, 710, 711

Description, 339

Duplicate Button, 339

Message ID, 337

Message List, 339

Messages Information, 339

Notes Button, 338

Project ID, 339

Release Notes, 338

Test Button, 340

Timestamp Button, 338

Microsoft Dynamics GP Import, 109, 136

Microsoft Outlook Client, 95

Minimize Log Entries, 260, 290, 301, 314, 361

Missing Resources, 126

Modal Dialog, 257, 258

Modified, 136, 192, 194, 263, 269, 270, 274, 290, 323

Modified Alternate, 136

Modified Mode, 373

Modified/Alternate ID, 219, 222

Modifier, 110, 263, 269, 290, 323, 538

Module

Administrator Tools, 13, 15, 108, 109, 130, 136, 140, 148,

152, 155, 156, 161, 163, 165, 188, 192, 197, 203, 208,

211, 215, 219, 225, 227, 230

Database Tools, 13, 16, 349, 384, 385, 389, 391, 412, 415,

417, 420, 422, 429, 432

Developer Tools, 13, 16, 231, 232, 233, 235, 236, 246,

254, 287, 299, 312, 321, 328, 337, 341, 345, 347

Form Control Tools, 13, 16, 350, 359, 375, 380, 381

Preview Mode, 13

System Module, 13, 14, 51, 52, 58, 63, 67, 69, 80, 82, 93,

97, 99, 101, 103, 105

Monthly Event, 258

MouseWheel, 446

Multi User Authentication Mode, 86

Multi-Entity Management, 167

Multi-Factor Authentication, 95

Multilingual Support for Test and Historical companies, 106

N
Name shown on Application title bar during initial loading,

72

Names Button, 273, 292, 304, 316, 324

Names Button Adds Keyword ‘Show’, 310, 327

Names Button Uses Clipboard, 280, 297, 310, 320, 326, 442

Names Button Uses Fully Qualified Names, 310, 327

Navigation, 27

Application Menus, 29

Application Tools Menu, 27

Area Page, 30, 42, 44, 46, 48, 58, 63, 67, 69, 80, 82, 93,

97, 99, 101, 103, 109, 130, 136, 140, 148, 152, 156,

161, 163, 165, 188, 192, 197, 203, 208, 211, 215, 219,

225, 227, 232, 233, 235, 236, 248, 254, 287, 299, 312,

321, 328, 337, 341, 359, 375, 380, 381, 385, 389, 391,

412, 415, 417, 420, 422, 429

GP Power Tools Area Page, 30, 42, 44, 46, 48, 58, 63, 67,

69, 97, 109, 130, 136, 140, 148, 152, 156, 161, 163,

197, 203, 208, 211, 219, 225, 227, 232, 233, 235, 248

GP Power Tools Menus, 29

GP Power Tools Navigation Pane, 29

Navigation Pane, 29

Options Button, 28, 42, 44, 46, 48, 58, 63, 67, 69, 80, 82,

93, 97, 99, 101, 103, 109, 130, 136, 140, 148, 152, 156,

161, 163, 165, 188, 192, 197, 203, 208, 211, 215, 219,

225, 227, 232, 233, 235, 236, 248, 254, 287, 299, 312,

321, 328, 337, 341, 359, 375, 380, 381, 385, 389, 391,

412, 415, 417, 420, 422, 429

Quick Links, 28

Standard Toolbar, 59, 63, 67, 105

Tools Menu, 27, 28, 58, 63, 67

Web Client, 30

Window Tools Menu, 28

Navigation Lists, 109, 136

Navigation Pane, 29

Net Execute, 438

Net Executer, 438

No Code Customization, 350, 351

Non Logging All Except Disabled, 247

Non Logging Automatic Start Only, 247

Non Logging Triggers, 247, 248, 260, 267, 282, 284, 285,

328, 633, 634, 635, 636, 662, 663

Note Fields, 424

Note Fix Utility, 177, 422, 437

Company Tree, 423

Delete Button, 424

Display Records, 424

Edit Fields Button, 425, 428

Exclude Tables Button, 426

Fix Notes Button, 425

Log Elapsed Times, 424

Mass Delete Button, 428

Note Fields, 424

Note Fix Utility Fields, 425

Note Fix Utility Tables, 426

Note Index List, 423

Process Button, 424

Record List, 424

Redisplay Button, 427

Table List, 423

Note Fix Utility Fields, 425

Note Fix Utility Tables, 426

Note Index List, 423

Notes Button, 237, 255, 288, 300, 313, 322, 329, 338, 360,

376

Number of days prior to password expiry to start warnings,

176

Number of days to keep logs, 84

Number of execution logs to keep, 283

Number of Lines Per Page when Exporting Reports (inc.

PDF), 75

Number of minutes to wait before attempting to close

windows, 175

Number of minutes to wait before closing Screen Output

window, 175

O
ODBC, 73

OK Button, 103, 110, 126, 131, 137, 141, 145, 149, 153, 157,

161, 163, 166, 203, 209, 343, 394

Old Field Value, 248

OLEClose, 78, 447

G P P O W E R T O O L S I N D E X

818 G P P O W E R T O O L S

Only include SQL Table & Views which have a

DEX_ROW_ID column, 403

Only include tables which contain data, 115

Only require System or Administrator Password to be entered

once per session, 177

Only restart selected logs when trigger fires, 285

Only show selected when expanding tree, 221

Only show Service Enabled Procedures, 125, 127

Only Show Tables with Account Fields, 403

Open Application Maximized on next login, 73

Open Button, 111, 131, 138, 149, 153, 161, 163, 209

Open Database Connectivity, 73

Open Form, 239

Open Form or Report Button, 243

Open Script Debugger on Startup, 348

Open Window Hidden, 267

Open Windows, 61

Optional Where Clause, 267, 387

Options, 279, 295, 309, 320, 326

Options Button, 28, 42, 44, 46, 48, 58, 63, 67, 69, 80, 82, 93,

97, 99, 101, 103, 109, 130, 136, 140, 148, 152, 156, 161,

163, 165, 188, 192, 197, 203, 208, 211, 215, 219, 225, 227,

232, 233, 235, 236, 248, 254, 287, 299, 312, 321, 328, 337,

341, 359, 375, 380, 381, 385, 389, 391, 412, 415, 417, 420,

422, 429

Options Menu, 117, 127, 133, 243, 249, 336, 366, 379, 383,

388, 390

About Dexterity, 250

All Columns, 127

Begins With, 127

Contains, 127

Customization Maintenance, 249

Customization Status, 249

Debug Expressions, 119, 134, 244

Debug Table Buffers, 120, 135, 245

Debug Watch, 119, 135, 245

Execute, 243

Export Compatibility Warning, 243

Field Descriptions, 118, 133

Find, 127

Find in Scripts, 243

Find Next, 127

Hidden About Window, 251

Process Monitor, 250

Redisplay, 127

Reset Resource Data, 383

Save and Continue, 243, 336, 366, 379

Sort Column, 127

Table Descriptions, 117, 133

Window Descriptions, 118, 134

Options Tab, 254, 282

Other SQL Profile Trace, 83, 284

Other Tab, 77

OUT_Condition, 270

Outlook, 95

Override maximum sessions per User, 213

Override system resizable check, 206

Override to Convert Table Structures without using Dynamics

Utilities, 401

Overwrite Duplicate Records, 390

Overwrite Table Contents, 390

P
Parameter Active, 330

Parameter Description, 330

Parameter Expansion Button, 332

Parameter From Value, 334

Parameter Hidden, 330

Parameter ID, 271, 282, 290, 292, 302, 304, 314, 316, 323,

324, 329, 335

Parameter Instructions, 330

Parameter Length/Decimal, 332

Parameter List Dialog, 328, 330, 335

Parameter List Drop Down List Maintenance, 332

Parameter List Drop Down List SQL Script, 333

Parameter List Information, 330

Parameter List Lookup Form Definition, 334

Parameter List Lookup SQL Script, 333

Parameter List Maintenance, 182, 438

SQL Lookup, 182

Parameter List Maintenance Additional Information, 332

Parameter Lists, 236, 271, 282, 290, 292, 302, 304, 314, 316,

323, 324, 328

Down Button, 335

Duplicate Button, 335

Notes Button, 329

Options Menu, 336

Parameter Active, 330

Parameter Description, 330

Parameter Expansion Button, 332

Parameter From Value, 334

Parameter Hidden, 330

Parameter ID, 271, 282, 290, 292, 302, 304, 314, 316, 323,

324, 329, 335

Parameter Instructions, 330

Parameter Length/Decimal, 332

Parameter List Dialog, 328, 330, 335

Parameter List Drop Down List Maintenance, 332

Parameter List Drop Down List SQL Script, 333

Parameter List Information, 330

Parameter List Lookup Form Definition, 334

Parameter List Lookup SQL Script, 333

Parameter List Maintenance Additional Information, 332

Parameter Lists, 271, 282, 290, 292, 302, 304, 314, 316,

323, 324

Parameter Maximum Value, 335

Parameter Minimum Value, 334

Parameter Mode, 331

Parameter Options, 331

Parameter Placeholder, 271, 292, 304, 316, 324, 328

Parameter Prompt, 330

Parameter Single Value, 334

Parameter Title, 330

Parameter To Value, 335

Parameter Type, 331

Parameters Button, 271, 292, 304, 316, 324

Preview Button, 335

Project ID, 330

Release Notes, 329

Save and Continue, 336

SQL Execute Setup, 333

Timestamp Button, 329

Up Button, 335

Parameter Maximum Value, 335

Parameter Minimum Value, 334

Parameter Mode, 331

Parameter Options, 331

Parameter Placeholder, 271, 292, 304, 316, 324, 328

Parameter Placeholders, 272, 292, 304, 316, 324

 G P P O W E R T O O L S I N D E X

 G P P O W E R T O O L S 819

Parameter Prompt, 330

Parameter Single Value, 334

Parameter Title, 330

Parameter To Value, 335

Parameter Type, 331

Parameters Button, 271, 292, 304, 316, 324

Password, 96, 377

Password Enabled for Users, 378

Password Field After, 354, 363

Password Field Before, 354, 363

Password Fields, 80

Password Form, 351, 362

Password Hash File, 398

Password ID, 351, 367, 375, 378

Password Information, 376

Password Name, 377

Password Reset Email Settings, 398, 413, 415, 432

Body, 415

CC Address, 415

Default Button, 416

Send SQL Login Password reset emails, 415

Subject, 415

Password Setup, 350, 375, 438

All Users and Companies, 378

Allowed Attempts, 377

Case Insensitive, 377

Disabled, 377

Duplicate Button, 378

Exclude Selected Users and Companies rather than include

them, 379

Notes Button, 376

Options Menu, 379

Password, 377

Password Enabled for Users, 378

Password ID, 375, 378

Password Information, 376

Password Name, 377

Project ID, 377

Prompt List, 377

Release Notes, 376

Save and Continue, 379

Selected Users and Companies, 378

Show Password, 377

Test Button, 379

Timestamp Button, 376

Users Button, 378

Password Window, 352, 363

Pathname for Debugger.xml file, 101

Pathname location for Debugger Setup files, exports and logs,

54, 82, 252

Pathname location for SQL Log file, 70

Per User Color Selection, 169, 170

Perform actions when fired and condition not met, 265

Perform actions when fired regardless of condition, 265

Performance SQL Profile Trace, 83, 284

Physical Name, 109, 305

Placeholders, 272, 304

POWERUSER Security Role, 230

Prefix for Disabled Companies, 199

Prevent application windows from opening outside of the

visible desktop area, 173, 203

Prevent user activity until login processes have completed,

175

Preview, 66, 95

Preview Button, 217, 335

Preview Data Button, 131, 419

Preview Mode, 13

Preview with Field Names, 131, 417, 419

Print Button, 139, 142, 146, 162, 164, 189, 397

Print Report, 397

Privacy Policy, 44

Procedure, 109, 257, 259, 264

Procedure Name, 264

Process Button, 394, 418, 424, 430

Insert, 418

Overwrite, 418

Replace, 418

Process Monitor, 78, 184, 250, 446

Process Multi User Mode SQL Server Action, 89

Process Single User Mode SQL Server Action, 89

Product Dictionary, 342

Product ID, 239

Product Key, 45

Product Name, 239, 263, 290, 323, 373

Product Version Validation, 227, 436, 442

Apply Button, 228

Comma Delimited, 228

Delete Button, 228

Do not check for Version Mismatch, 228

Export Button, 228

Export Mode, 228

HTML Table, 228

Remove Button, 228

System Versions, 227

Tab Delimited, 228

Profile ID, 198, 199, 212, 213, 385, 386, 441

Profile Name, 198, 212, 386

Profile.txt, 52, 54

Profile_<User>_<Company>_<Date>_<Time>.txt, 54

Progress Window, 387, 390

Project Component List, 239, 243

Project Description, 238

Project ID, 237, 239, 240, 282, 290, 302, 314, 323, 330, 339,

361, 377

Project Information, 238

Project Setup, 98, 236, 437

.Net Execute Setup, 236

Add Button, 242

All Users and Companies, 241

Configuration File Path, 238, 243

Current Project, 238

Customization Maintenance, 236, 239

Customization Maintenance Selection, 242

Debug Expressions, 244

Debug Table Buffers, 245

Debug Watch, 245

Delete Button, 239

Disabled, 238

Duplicate Button, 240

Exclude Selected Users and Companies rather than include

them, 241

Execute Button, 243

Export Button, 241

Export Compatibility Warning, 243

Export Linked Custom Resources, 239

Find in Scripts, 243

Import Button, 241

Long Description, 238

Message Setup, 236

Notes Button, 237

G P P O W E R T O O L S I N D E X

820 G P P O W E R T O O L S

Open Form, 239

Open Form or Report Button, 243

Options Menu, 243

Parameter Lists, 236

Product ID, 239

Product Name, 239

Project Component List, 239, 243

Project Description, 238

Project ID, 237, 239, 240, 282, 290, 302, 314, 323, 330,

339, 361, 377

Project Information, 238

Redisplay Button, 243

Release Notes, 237

Remove Project objects not being imported, 241

Reset Path Button, 243

Runtime Execute Setup, 236

Save and Continue, 243

Selected Users and Companies, 241

SQL Execute Setup, 236

Start Button, 242

Start Project Triggers Automatically on Login for Users,

240

Stop Button, 242

Timestamp Button, 237

Transfer User and Company details, 239

Trigger Setup, 236

Update Triggers/Scripts Button, 243

Users Button, 240

Project Setup Duplicate Project, 240

Project SetupExecute, 243

Project sSetup

Project Setup Duplicate Project, 240

Prompt List, 377

Publish Script for Users, 293, 306, 316

Published to Executer Window, 232, 233, 235, 290, 301, 314

Pull Window Focus before script, 267

Q
Query Analyzer, 286, 299

QueueMoreInfo, 78, 446

Quick Links, 28, 30, 59, 63, 67

R
Raise All Windows, 27, 106

Read Record, 257

Recommended Configuration, 25, 31

Record List, 424

Record.xml, 252

Record_<User>_<Company>_<Date>_<Time>.xml, 252

Redisplay Button, 99, 104, 131, 141, 145, 149, 153, 157, 161,

163, 209, 243, 344, 380, 382, 394, 413, 419, 427, 430

Redisplay Field Button, 114

References, 318, 320

References Button, 318

Refresh Button, 61

Refresh Dictionary Resources, 127

RegEx, 355, 369

Register, 248

Registration, 44, 247

Registry, 78

Regular Expression, 355, 369

Re-install, 43

Reject Field Change Script, 357, 363

Reject Field Post Script, 357, 363

Reject Field Pre Script, 357, 363

Reject Form Post Script, 352, 362

Reject Form Pre Script, 351, 362

Reject Scrolling Window Delete, 353, 363

Reject Scrolling Window Fill, 354, 363

Reject Scrolling Window Insert, 353, 363

Reject Scrolling Window Post, 354, 363

Reject Scrolling Window Pre, 354, 363

Reject Scrolling Window Save, 353, 363

Reject Window Activate Script, 353, 363

Reject Window Post Script, 352, 363

Reject Window Pre Script, 352, 363

Release Notes, 237, 255, 288, 300, 313, 322, 329, 338, 360,

376

Reload of User Dex.ini Settings, 106

Remember Last Company, 105

RememberUser, 105

Remove ACTIVITY table record to make license available,

187

Remove Attachment Button, 65

Remove Button, 65, 228

Remove Exemption Button, 396

Remove Project objects not being imported, 241

Remove SQL Profile Trace SQL Components, 92

Rename DEXSQL.LOG at the beginning of each day, 70

Rename log each day, 84

Replace …, 278, 294, 308, 319, 325

Replace and Find Next, 278, 294, 309, 319, 325

Report, 109, 136

Report Explorer, 123, 439

Back Up Button, 126

Comma Delimited, 126

Export Button, 126

Export Mode, 126

HTML Table, 126

OK Button, 126

Refresh Dictionary Resources, 127

Tab Delimited, 126

Report Writer, 76, 110, 440, 761, 762, 763, 764, 765, 766,

768, 770, 771, 772, 773, 774, 776, 778, 779

Screen Output, 76

ScreenOutput, 440

Report Writer Functions, 289, 761

ReportExplorer, 275

Reports Tab, 75

Reserve a license for user, 212

Reset Button, 205, 370

Reset Buttons, 166

Reset Path Button, 243

Reset Resource Data, 383

Reset target before copying, 158

Reset User Passwords, 413

Reset User SQL Logins and Passwords, 405, 412

Reset Window Memory Settings, 205

Reset Window Position Memory Settings, 205

Reset Window Positions, 71

Resource, 362

Resource Detail Button, 151

Resource Explorer, 126, 227, 434

All Columns, 127

Back Up Button, 126

Begins With, 127

Comma Delimited, 126

 G P P O W E R T O O L S I N D E X

 G P P O W E R T O O L S 821

Contains, 127

Expanded Fields, 127

Export Button, 126

Export Mode, 126

Find, 127

Find Next, 127

Hidden Forms, 126

HTML Table, 126

OK Button, 126

Only show Service Enabled Procedures, 127

Options Menu, 127

Redisplay, 127

Refresh Dictionary Resources, 127

Sort Column, 127

Splitter, 127

Tab Delimited, 126

Resource Exporer

Missing Resources, 126

Resource Filter, 350, 362, 372, 373, 374

Resource Finder, 111, 130, 435

Auto Search, 131

Case Mode, 132

Clear Button, 131

Debug Expressions, 134

Debug Table Buffers, 135

Debug Watch, 135

Field Descriptions, 133

Filter Empty Tables, 132

Filter for Field, 132

Filter for Field (Field List), 132

Filter for Value, 132

Filter Mode, 131

Mark All, 132

OK Button, 131

Open Button, 131

Options Menu, 133

Preview Data Button, 131

Preview with Field Names, 131

Redisplay Button, 131

Resource Info Button, 131

Search Mode, 132

Show currently selected Window and Field information,

131

Show Expanded Fields, 132

SQL Execute Setup, 131

Table Descriptions, 133

Unmark All, 132

Window Descriptions, 134

Resource Finder Button, 111

Resource ID, 109

Resource Info Button, 131, 142, 158

Resource Information, 104, 109, 130, 131, 142, 158, 348, 435

Associated Tables Button, 111

Back Button, 110

Case Sensitive, 111

Clear Button, 111

Constant, 109

Constant Explorer, 126

Copy Button, 111

Customization Tools, 109

DAG Control Button, 116, 318

Debug Expressions, 119

Debug Table Buffers, 120

Debug Watch, 119

Dexterity, 109

Dictionary, 109

Dictionary Assembly Generator Control, 104, 116, 318

Display Keys Button, 113

Display Name, 109

Display Parameters, 116

Display Parameters Button, 116

Display Usage Button, 114

Document Access, 109

Extender Resources, 109

Field, 109

Field Descriptions, 118

Field Explorer, 123

Field Information, 129

Field Lookup, 115

Form, 109

Form Explorer, 120

Function, 109

Global Variable, 109

Global Variable Explorer, 125

Import Utility, 109

Letters, 109

Link to Dexterity Script Debugger, 348

Menu Explorer, 121

Message, 109

Microsoft Dynamics GP Import, 109

Navigation Lists, 109

OK Button, 110

Open Button, 111

Options Menu, 117

Physical Name, 109

Procedure, 109

Redisplay Field Button, 114

Report, 109

Report Explorer, 123

Resource Explorer, 434

Resource Finder Button, 111

Resource ID, 109

Resource Type, 111

Right click enabled, 129, 140

Script, 109

Script Explorer, 124

Search Again Button, 110

Search Mode, 111

Search Results, 110

Security Button, 111, 140

Security Object Explorer, 124

Security Objects, 109

Select Associated Table, 111

Select Table Containing Field, 115

Series Posting Permissions, 109

Service Enabled Procedure, 125, 140

Show currently selected Window and Field information,

111

SmartList Builder Permissions, 109

SmartList Objects, 109

Static Values, 117

Table, 109

Table Descriptions, 117, 128

Table Explorer, 122, 156, 434

Table Group, 109

Table Keys, 113

Table Keys Lookup, 113

Table Lookup, 112

Table Usage, 114

Table Usage Lookup, 114

G P P O W E R T O O L S I N D E X

822 G P P O W E R T O O L S

Tables Containing Field Button, 115

Technical Name, 109

Unknown Objects, 109, 124

Warning, 109

Window, 109

Window Descriptions, 118, 128

Resource Information Context, 348

Resource Sequence, 372

Resource Tab, 254, 263

Resource Tree, 221

Resource Type, 111, 221

Resources Button, 366

Restore Button, 101

Restore Field Value, 267

Restore Legacy Print Dialog, 76

Restriction of Scope, 286

ActiveX Data Objects, 286

ADO, 286

eConnect, 286

Integration Manager, 286

Query Analyzer, 286

VBA, 286

Visual Basic for Applications, 286

Reverse action based on Script condition, 370

Right click enabled, 129, 139, 140, 151, 154

Roll out Profile using Dex.ini Configuration, 199

Round Decimals Field Value, 356, 363

Rule, 350, 362, 367

Rule Description, 367, 372

Rule Disabled, 367

Rule Fields, 216

Rule List, 215

Rule Sequence, 367, 372, 381

Rule Type

Add Required Field, 356

After Field Change Script, 357

After Field Post Script, 357

After Field Pre Script, 357

After Field Value Changed Script, 358

After Form Post Script, 352

After Form Pre Script, 351

After Scrolling Window Delete, 353

After Scrolling Window Fill, 354

After Scrolling Window Insert, 354

After Scrolling Window Post, 354

After Scrolling Window Pre, 354

After Scrolling Window Save, 353

After Window Activate Script, 353

After Window Post Script, 353

After Window Pre Script, 352

Change Field Caption, 357

Change Window Title, 352

Clear Changes Before Field, 357

Clear Changes Before Window Close, 352

Clear Field Value, 355

Default Field Value, 355

Disable Field, 355

Disable Form, 351

Disable Window, 352

Enable Autocomplete Field, 356

Field Rules, 354

Focus First Window Field, 352

Form Menu Shortcut, 351

Form Rules, 351

Format String Field Value, 356

Hide Field, 355

Labels, 358

Lock Field, 355

Lock Scrolling Window, 353

Mask Field Value, 356

Password Field After, 354

Password Field Before, 354

Password Form, 351

Password Window, 352

Reject Field Change Script, 357

Reject Field Post Script, 357

Reject Field Pre Script, 357

Reject Form Post Script, 352

Reject Form Pre Script, 351

Reject Scrolling Window Delete, 353

Reject Scrolling Window Fill, 354

Reject Scrolling Window Insert, 353

Reject Scrolling Window Post, 354

Reject Scrolling Window Pre, 354

Reject Scrolling Window Save, 353

Reject Window Activate Script, 353

Reject Window Post Script, 352

Reject Window Pre Script, 352

Round Decimals Field Value, 356

Scrolling Window Rules, 353

Set Field Background Color, 356

Set Field Font Color, 356

Set Field Value, 355

Set Focus to Field, 357

Set Focus to Next Field, 357

Strip Invalid Field Characters, 355

Uppercase Field Value, 356

Validate Field Value, 355

Warning Field Before, 355

Window Rules, 352

Rule Types, 351

Rule Users Button, 364

Run rule delayed, 370

Runtime Engine, 434

DEX.DIC, 434

Dictionary, 434

Runtime Execute

Goto Line …, 294

Runtime Execute Context, 348

Runtime Execute Information, 289

Runtime Execute Script Clipboard, 290

Clear Script, 290

Copy Script, 290

Runtime Execute Setup, 232, 236, 287, 299, 312, 321, 328,

348, 350, 368, 434, 437, 580, 761, 762, 763, 764, 765, 766,

768, 770, 771, 772, 773, 774, 776, 780, 781, 783, 785, 787,

789

.Net Execute Setup, 312

All Users and Companies, 293

Check Syntax, 295

Clear Script, 290

Clipboard Button, 290

Copy Script, 290

Custom Forms, 289

Debug Expressions, 297

Debug Table Buffers, 298

Debug Watch, 298

Duplicate Button, 293

Exception Error Dialog, 292

 G P P O W E R T O O L S I N D E X

 G P P O W E R T O O L S 823

Exclude Selected Users and Companies rather than include

them, 294

Execute, 295

Execute Button, 292

Execute Dexterity SanScript code in the context of

Product, 290

Execute Selection, 292

Find …, 294

Find Next, 294

Font Size, 295

Font Style, 295

Generate Dexterity Pass Through, 296

Help Button, 292

Helper Button, 292

Helper Function Assistant, 292

Insert Button, 292

Insert Helper Function, 292

Long Description, 232, 289

Minimize Log Entries, 290

Modified, 290

Names Button, 292

Names Button Uses Clipboard, 297

Notes Button, 288

Options, 295

Parameter ID, 290, 292

Parameter Lists, 290, 292, 323

Parameter Placeholder, 292

Parameters Button, 292

Product Name, 290

Project ID, 290

Publish Script for Users, 293

Published to Executer Window, 232, 290

Release Notes, 288

Replace …, 294

Replace and Find Next, 294

Report Writer Functions, 289

Runtime Execute Information, 289

Runtime Execute Script Clipboard, 290

Runtime Execute Setup, 287

RW Functions, 289

Save and Continue, 294

Script, 291

Script ID, 288, 293, 308, 580

Script Language, 296

Script Menu, 294

Script Name, 289

Script Purpose, 289, 350, 368

Script Purpose Disabled, 290

Select Custom Script Purpose, 761, 780

Selected Users and Companies, 293

Service Enabled Procedure, 289

SmartList Builder Goto, 289

SQL Execute Setup, 299

SQL Gotos, 289

SQLExecuteGotoHandler, 308

Syntax Errors, 291

Timestamp Button, 288

Transact SQL, 291

URL Drill Backs, 289

Users Button, 293

WinthropDC.GpPowerToolsVB.dll, 297, 326

WinthropDC.GpPowerToolsVC.dll, 290

Runtime Executer, 232, 289, 290, 437

Execute Button, 232

Long Description, 232

Script ID, 232

RW Functions, 289, 761

Runtime Execute Setup, 761, 762, 763, 764, 765, 766, 768,

770, 771, 772, 773, 774, 776, 780

RW_GetUserMasterAdditionalData, 778

RW_GetUserMasterAdditionalPrompts, 779

rw_ReportEnd, 763

rw_ReportEnd Old Method, 771

rw_ReportStart, 762

rw_ReportStart Old Method, 770

rw_TableHeaderCurrency, 765

rw_TableHeaderCurrency Old Method, 773

rw_TableHeaderString, 764, 778, 779

rw_TableHeaderString Old Method, 772

rw_TableLineCurrency, 768

rw_TableLineCurrency Old Method, 776

rw_TableLineString, 766

rw_TableLineString Old Method, 774

RW_GetUserMasterAdditionalData, 778

RW_GetUserMasterAdditionalPrompts, 779

rw_ReportEnd, 763

rw_ReportEnd Old Method, 771

rw_ReportStart, 762

rw_ReportStart Old Method, 770

rw_TableHeaderCurrency, 765

rw_TableHeaderCurrency Old Method, 773

rw_TableHeaderString, 764, 778, 779

rw_TableHeaderString Old Method, 772

rw_TableLineCurrency, 768

rw_TableLineCurrency Old Method, 776

rw_TableLineString, 766

rw_TableLineString Old Method, 774

S
SAMPLEDATEMSG, 72, 445

Sanscript, 232, 246, 272, 287, 292, 303, 434

Save and Continue, 243, 278, 294, 309, 319, 326, 336, 366,

379

Save Button, 62

Save Path, 60, 62

Save Record, 257

SBA, 103, 283, 362

Scheduled Event, 257, 258, 259, 283

Screen Output, 76, 440

ScreenShot, 58, 60, 178, 267, 268, 438

Cancel Button, 62

Email Button, 61

Include Current Launch File, 60, 178, 268

Include Dex.ini Settings File, 60, 178, 267

Include info for all databases, 60, 178, 268

Include User Dex.ini Settings File, 60, 178, 268

Info Button, 61

Mark All Button, 61

Open Windows, 61

Refresh Button, 61

Save Button, 62

Save Path, 60, 62

System Status, 58, 60, 61, 62, 268

Unmark All Button, 61

Script, 109, 291, 303, 315, 324

Script Context, 269, 270

Script Debugger Context, 119, 134, 135, 244, 245, 280, 297,

298, 347

Script Debugger Expressions, 119, 134, 244, 280, 297

G P P O W E R T O O L S I N D E X

824 G P P O W E R T O O L S

Script Debugger Table Buffers, 120, 135, 245, 281, 298

Script Debugger Watch, 119, 135, 245, 280, 298

Script Editor Settings, 448

Script Expansion Button, 343

Script Explorer, 124, 276, 439

Back Up Button, 126

Export Button, 126

Export Mode, 126

OK Button, 126

Only show Service Enabled Procedures, 125, 127

Refresh Dictionary Resources, 127

Script ID, 232, 233, 235, 288, 293, 300, 305, 313, 316, 321,

351, 368, 580, 581, 582, 583

Script Language, 296, 315

Visual Basic.Net, 315

Visual C#, 315

Script Menu, 278, 294, 308, 319, 325

Check Syntax, 278, 295, 309, 319

Convert References, 309, 326

Debug Expressions, 280, 297

Debug Table Buffers, 281, 298

Debug Watch, 280, 298

Execute, 295, 310, 320

Find …, 278, 294, 308, 319, 325

Find Next, 278, 294, 308, 319, 325

Font Size, 279, 295, 309, 320, 326, 448

Font Style, 279, 295, 309, 320, 326, 448

Generate Dexterity Pass Through, 279, 296, 310

Goto Line …, 278, 294, 309, 319, 326

Names Button Adds Keyword ‘Show’, 310, 327

Names Button Uses Clipboard, 280, 297, 310, 320, 326,

442

Names Button Uses Fully Qualified Names, 310, 327

Options, 279, 295, 309, 320, 326

References, 320

Replace …, 278, 294, 308, 319, 325

Replace and Find Next, 278, 294, 309, 319, 325

Save and Continue, 278, 294, 309, 319, 326

Syntax Highlighting, 448

Script Name, 289, 301, 314

Script Purpose, 289, 350, 368

Script Purpose Disabled, 290

Script Tab, 254, 269

Script.log, 52, 54

Script_<User>_<Company>_<Date>_<Time>.log, 54

ScriptCommentColor, 448

ScriptDebugger, 70, 444

ScriptDebuggerProduct, 70, 444

ScriptEditorFontName, 448

ScriptEditorFontSize, 448

ScriptEditorSyntaxColoring, 448

ScriptErrorColor, 448

ScriptIdentifierColor, 448

ScriptKeywordColor, 448

ScriptLogEnhanced, 70, 444

ScriptNumberColor, 448

ScriptOperatorColor, 448

ScriptStringColor, 448

Scroll

Change, 257, 258

Delete, 257, 258

Fill, 257, 258

Insert, 257, 258

Post, 257, 258

Pre, 257, 258

Scroll Fill, 267

Scrolling Window Line Color, 166

Scrolling Window Rule, 353, 363

After Scrolling Window Delete, 353, 363

After Scrolling Window Fill, 354, 363

After Scrolling Window Insert, 354, 363

After Scrolling Window Post, 354, 363

After Scrolling Window Pre, 354, 363

After Scrolling Window Save, 353, 363

Lock Scrolling Window, 353, 363

Reject Scrolling Window Delete, 353, 363

Reject Scrolling Window Fill, 354, 363

Reject Scrolling Window Insert, 353, 363

Reject Scrolling Window Post, 354, 363

Reject Scrolling Window Pre, 354, 363

Reject Scrolling Window Save, 353, 363

Search Again Button, 110

Search Mode, 111, 132

Search Results, 110

Security, 24, 142, 154, 159

Alternate/Modified Forms and Reports, 142, 154

Security Role Setup, 142, 154

Security Roles, 26

Security Task Setup, 142, 154

User Security Setup, 26, 142, 154

Security Analyzer, 152, 154, 435

Comma Delimited, 154

Detail Format, 152

Export Button, 154

Export Mode, 154

Go To Button, 154

HTML Table, 154

OK Button, 153

Open Button, 153

Options Menu, 154

Redisplay Button, 153

Refresh Resource Information Table, 154

Right click enabled, 154

Security Button, 153

Splitter, 154

Summary Format, 152

SY09400, 153, 154

syCurrentResources, 153, 154

System Level Queries, 152

Tab Delimited, 154

Users & Companies Queries, 152

Security Button, 111, 140, 142, 153, 159, 162, 164

Security Button Drop List, 138, 149

Security Denied, 142, 159, 161, 162, 164, 435

Comma Delimited, 162

Company, 162

Company ID, 162

Delete Button, 161

Display Mode, 162

Export Button, 162

Export Mode, 162

HTML Table, 162

Include, 162

Mark All Button, 162

OK Button, 161

Open Button, 161

Options Menu, 162

Print Button, 162

Redisplay Button, 161

Refresh Application Navigation, 162

 G P P O W E R T O O L S I N D E X

 G P P O W E R T O O L S 825

Security Button, 162

Sort Mode, 162

Tab Delimited, 162

Unmark All Button, 162

User ID, 162

Security Hidden, 142, 163

Comma Delimited, 164

Company, 164

Company ID, 164

Delete Button, 163

Display Mode, 164

Export Button, 164

Export Mode, 164

HTML Table, 164

Mark All Button, 164

OK Button, 163

Open Button, 163

Options Menu, 164

Print Button, 164

Redisplay Button, 163

Refresh Application Navigation, 164

Security Button, 164

Sort Mode, 164

Tab Delimited, 164

Unmark All Button, 164

User ID, 164

Security Hide, 436

Security Information, 111, 138, 140, 146, 149, 153, 159, 162,

435

Company, 141

Deny Based Security, 142

Filter Menus, 147

Go To Button, 140, 142

Inactive, 141

Legend Button, 142

Menu Command Details, 147

Menu Explorer, 147

OK Button, 141

Options Menu, 146

Print Button, 142

Redisplay Button, 141

Refresh Resource Information Table, 146

Resource Info Button, 142

Security Button, 142

Security Information Legend, 142

Security Information Resources, 142, 144

Security Information SQL Role Views, 143

Show All SQL Users & Databases, 144

Show only Selected, 141

Show Resources Button, 142

Splitter, 143

SUPERUSER Security Role, 146

SUPERUSER Security Task, 146

SY09400, 146

syCurrentResources, 146

User ID, 141

Security Information Legend, 142, 145

Security Information Resources, 142, 144, 435

Comma Delimited, 145

Display Security Tasks and Roles, 146

Export Button, 145

Export Mode, 145

HTML Table, 145

Legend Button, 145

OK Button, 145

Print Button, 146

Redisplay Button, 145

Security Information Legend, 145

Show Series, 146

Tab Delimited, 145

Security Information SQL Role Views, 143

Security Log, 100, 148, 180, 435

Comma Delimited, 150

Company, 149

Company ID, 149

Create/Update Security Task from Log, 149

Create/update Security Task from selected rows, 149

Detail, 150

Details Button, 150

Display Mode, 148

Excluded from Security, 149

Export Button, 150

Export Mode, 150

HTML Table, 150

Mark All Button, 151

OK Button, 149

Open Button, 149

Redisplay Button, 149

Resource Detail Button, 151

Resource Details, 151

Right click enabled, 151

Security Button Drop List, 149

Security Log Detail, 150

Security Log Resource Details, 151

Sort Mode, 149

Tab Delimited, 150

Unmark All Button, 151

User ID, 149

Security Log Detail, 150

Security Log Details, 435

Security Log Resource Details, 151, 435

Security Object Explorer, 124, 439

Security Objects, 109, 136

Customization Tools, 109, 136

Document Access, 109, 136

Extender Resources, 109, 136

Import Utility, 109, 136

Letters, 109, 136

Microsoft Dynamics GP Import, 109, 136

Navigation Lists, 109, 136

Security Object Explorer, 124

Series Posting Permissions, 109, 136

SmartList Builder Permissions, 109, 136

SmartList Objects, 109, 136

Unknown Objetcs, 109, 124, 136

Security Privileges, 137

Security Profiler, 136, 139, 179, 435

Access Denied, 137

Alternate, 136

Application Level Security, 136, 137

Automatic Open Mode, 139, 179

Clear Button, 137

Create/Update Security Task, 138

Customization Tools, 136

Document Access, 136

Export Button, 137

Extender Resources, 136

Form, 136

Import Button, 137

Import Utility, 136

G P P O W E R T O O L S I N D E X

826 G P P O W E R T O O L S

Letters, 136

Mark All Button, 139

Microsoft Dynamics GP Import, 136

Modified, 136

Modified Alternate, 136

Navigation Lists, 136

OK Button, 137

Open Button, 138

Options Menu, 139

Print Button, 139

Refresh Application Navigation, 139

Report, 136

Right click enabled, 139, 140

Security Button, 140

Security Button Drop List, 138

Security Objects, 136

Security Privileges, 137

Security Profiler Log, 137

Series Posting Permissions, 136

SmartList Builder Permissions, 136

SmartList Objects, 136

SQL Server Security, 137

Start Capture of Resources and Security Objects, 138

Stop Capture and create/update Security Task, 138

Table, 136

Unknown Objects, 136

Unmark All Button, 139

Windows Level Security, 137

Security Profiler Log, 137

Security Resource Descriptions, 230

Security Role Setup, 142, 154

Security Roles, 26

Security Task Setup, 142, 154

Select Accociated Table

Filter Tables having field, 112

Select Associated Table, 111

Select Automatic Logout hours, 185

Select Button, 370

Select Buttons, 166

Select Custom Script Purpose, 761, 780

Select Table Containing Field, 115

Only include tables which contain data, 115

Select Theme, 166, 170

Selected Users and Companies, 193, 200, 223, 241, 261, 293,

306, 317, 364, 366, 378

Selection List, 221

Send Button, 65, 95

Send Email, 63, 95, 439

Add Attachment Button, 65

Add Button, 65

Administrator Email, 65

Attachments, 65

Bcc Button, 65

Bcc Field, 65

Body, 65, 94

Body Text, 65, 94

Cancel Button, 66

Cc Button, 65

Cc Field, 65

Default Body Text, 65

Default Subject, 65

From Field, 65

Remove Attachment Button, 65

Remove Button, 65

Send Button, 65, 95

Sender’s Email, 65

Subject, 65, 93

To Button, 65

To Field, 65

Send Email using Administrator Email or Email Address

below, 266

Send HTML, 95

Send Password changed emails, 412

Send Password Reset Emails, 432

Send SQL Login Password reset emails, 415

Sender’s Email, 65, 96

Series Posting Permissions, 109, 136

Service Based Architecture, 103, 283, 362

Service Enabled Procedure, 125, 140, 289

Service Enabled Procedures, 780

Runtime Execute Setup, 781, 783, 785, 787, 789

ServiceCreateCustom, 781

ServiceDeleteCustom, 783

ServiceGetCustom, 785

ServicePostCustom, 789

ServiceUpdateCustom, 787

Service Procedures, 780

Runtime Execute Setup, 781, 783, 785, 787, 789

ServiceCreateCustom, 781

ServiceDeleteCustom, 783

ServiceGetCustom, 785

ServicePostCustom, 789

ServiceUpdateCustom, 787

ServiceCreateCustom, 781

ServiceDeleteCustom, 783

ServiceGetCustom, 785

ServicePostCustom, 789

ServiceUpdateCustom, 787

Set Field Background Color, 356, 363

Set Field Font Color, 356, 363

Set Field Value, 355, 363

Set Focus to Field, 357

Set Focus to Next Field, 357

Setting or Search String, 188, 189

Settings Applied Message, 178

Settings List, 188

Setup Backup and Restore, 101

Pathname for Debugger.xml file, 101

Restore Button, 101

Setup Button, 101

Setup Mode, 70, 433

Share User Settings for all Launch File Paths, 199, 200

Short Description used for dialog buttons, 221

Show Advanced Macro Menu, 77

Show All Menu Items, 78

Show All SQL Users & Databases, 144

Show currently selected Window and Field information, 111,

131

Show Debug Messages on next login, 70

Show Dexterity Technical Name Syntax Button, 303

Show Disabled Companies, 199

Show Expanded Fields, 132

show keyword, 305

Show Launch File, 196

Show only Selected, 141

Show Passsword, 377

Show Resources Button, 142

Show Series, 146

Show SQL Profile Traces, 56

Show Structure Errors Button, 404

 G P P O W E R T O O L S I N D E X

 G P P O W E R T O O L S 827

Show Table Groups, 159

ShowAdvancedMacroMenu, 77, 445

ShowAllMenuItems, 78, 445

ShowDebugMessages, 70, 444

ShowDynamics, 78

Silent, 188

Single User Authentication Mode, 86

SkipVersionChecks, 445

Small SQL Profile Trace, 83, 284

Smartlist, 180, 218

SmartList Builder Goto, 289

SmartList Builder Permissions, 109, 136

SmartList Objects, 109, 136

SMTP Server, 96

SMTP Server Port, 96

SMTP Server via .Net Addin, 95

SMTP Server via CDO, 95

Snippet

Goto Line …, 326

Snippet ID, 324

Snippet Information, 322

Snippet Menu, 323

Snippet Mode, 323

Snippet Name, 323

Snippet Script Clipboard, 323

Clear Script, 323

Copy Script, 323

Snippet Setup, 272, 292, 304, 316, 438

Clear Script, 323

Clipboard Button, 323

Convert References, 326

Copy Script, 323

Duplicate Button, 324

Execute Dexterity SanScript code in the context of

Product, 323

Find …, 325

Find Next, 325

Font Size, 326

Font Style, 326

Help Button, 324

Helper Button, 324

Helper Function Assistant, 324

Insert Button, 273, 304, 323, 324

Insert Helper Function, 324

Modified, 323

Names Button, 324

Names Button Adds Keyword ‘Show’, 327

Names Button Uses Clipboard, 326

Names Button Uses Fully Qualified Names, 327

Notes Button, 322

Options, 326

Parameter ID, 323, 324

Parameter Lists, 324

Parameter Placeholder, 324

Parameter Placeholders, 324

Parameters Button, 324

Product Name, 323

Project ID, 323

Release Notes, 322

Replace …, 325

Replace and Find Next, 325

Runtime Execute Information, 322

Runtime Execute Script Clipboard, 323

Save and Continue, 326

Script, 324

Script Menu, 325

Snippet ID, 321

Snippet Menu, 323

Snippet Mode, 323

Snippet Name, 323

Timestamp Button, 322

WinthropDC.GpPowerToolsVC.dll, 323

Snippet SetupSnippet ID, 324

Sort Mode, 149, 162, 164, 209

Source User ID, 417, 418

Spinner Controls, 166

Splitter, 127, 143, 154

SQL Database, 302

SQL Execute

Goto Line …, 309

SQL Execute Information, 301

SQL Execute Script Clipboard, 303

Clear Script, 303

Copy Script, 303

SQL Execute Setup, 131, 233, 236, 299, 321, 328, 333, 419,

437, 581, 582

alias keyword, 305

All Users and Companies, 306

Check Syntax, 309

Clear Script, 303

Clipboard Button, 303

Close or clear SQL Results after Goto script executed, 308

Comma Delimited, 307

Convert References, 309

Copy Script, 303

Database, 302

Display Name, 305

Divider Adjustment Buttons, 304

Duplicate Button, 305

Exception Error Dialog, 304

Exclude Selected Users and Companies rather than include

them, 306

Execute, 310

Execute Button, 304

Execute Query in which SQL Database, 302

Execute Script for all Companies, 302

Execute Selection, 304

Expansion Button, 302

Export Button, 307

Export Mode, 307

field keyword, 305

Find …, 308

Find Button, 307

Find Next, 308

Font Size, 309

Font Style, 309

Generate Dexterity Pass Through, 310

GO Statement, 305

Gotos Button, 307

HTML Table, 307

Insert Button, 304

Limit results set to fixed number of lines, 302

List, 304

Long Description, 233, 301

Minimize Log Entries, 301

Names Button, 304

Names Button Adds Keyword ‘Show’, 310

Names Button Uses Clipboard, 310

Names Button Uses Fully Qualified Names, 310

Notes Button, 300

G P P O W E R T O O L S I N D E X

828 G P P O W E R T O O L S

Options, 309

Parameter ID, 302, 304

Parameter Lists, 302, 304

Parameter Placeholders, 304

Parameters Button, 304

Physical Name, 305

Placeholders, 304

Project ID, 302

Publish Script for Users, 306

Published to Executer Window, 233, 301

Query Analyzer, 299

Release Notes, 300

Replace …, 308

Replace and Find Next, 309

Save and Continue, 309

Script, 303

Script ID, 300, 305, 581, 582

Script Menu, 308

Script Name, 301

Selected Users and Companies, 306

Show Dexterity Technical Name Syntax Button, 303

show keyword, 305

SQL Database, 302

SQL Execute Information, 301

SQL Execute Script Clipboard, 303

SQL Execute Setup Gotos, 308

SQL Gotos, 234, 307

SQLExecuteGotoHandler, 308

Tab Delimited, 307

Table Explorer, 304

Text, 304

Timestamp Button, 300

Transact SQL, 233, 299, 303, 305

Users Button, 306

WinthropDC.GpPowerToolsVB.dll, 310

SQL Execute Setup Gotos, 308

Add Button, 308

Bottom Button, 308

Down Button, 308

Goto Mode, 308

Top Button, 308

Up Button, 308

SQL Executer, 233, 301, 437

Comma Delimited, 234

Execute Button, 233

Export Button, 234

Export Mode, 234

Find Button, 233

Gotos Button, 234

HTML Table, 234

Long Description, 233

Script ID, 233

Tab Delimited, 234

SQL Gotos, 234, 289, 307, 565, 566, 570, 571, 573, 574, 575,

576, 577

Goto Mode, 575, 576

SQL Logging, 52, 71, 83, 284

SQL Login Maintenance, 405, 412, 415, 437

Apply Advanced SQL Server options, 413

Apply Button, 413

Apply User Status, 413

Automatically Generate Passwords, 413

Cancel Button, 413

Change Password Next Login, 413

Email Settings, 413

Enforce Password Expiration, 413

Enforce Password Policy, 413

Mark All Button, 414

Password Reset Email Settings, 413

Redisplay Button, 413

Reset User Passwords, 413

Send Password changed emails, 412

Unmark All Button, 414

User List, 412

User Password, 413

User Status, 413

SQL Maintenance, 432

Keep Table Data for SQL Maintenance, 432

Table Information for SQL Maintenance, 432

SQL Native Client, 73

SQL Profile Trace Application, 56

SQL Profile Trace Mode, 83, 284

SQL Profile Trace Settings, 85

SQL Profile Trace User, 56

SQL Profile Traces, 36, 56, 57

Active SQL Profile Traces, 56, 57

All Traces on SQL Server, 56

All Users, 56

Current User only, 56

GP Power Tools Traces only, 56

Show SQL Profile Traces, 56

SQL Profile Trace Application, 56

SQL Profile Trace User, 56

SQL Profile Tracing Configuration, 36

Stop SQL Profile Trace, 56

Stranded SQL Profile Traces, 56

SQL Profile Tracing, 36, 52, 56, 83, 85, 284

Large, 83, 284

Medium, 83, 284

Other, 83, 284

Performance, 83, 284

Small, 83, 284

SQL Profile Tracing Configuration, 36

SQL Results, 437, 563, 564, 565, 566, 567, 570, 571, 573,

574, 575, 576, 577

SQL Gotos, 565, 566, 570, 571, 573, 574, 575, 576, 577

SQL Results 2, 568, 569, 570, 571, 572

SQL Server, 49, 52, 83, 85, 110, 284

SQL Logging, 52, 83, 284

SQL Profile Tracing, 52, 83, 85, 284

SQL Server Security, 137

SQL Trigger Control, 196, 420, 437

Database Tree, 420

Delete Disabled Triggers Button, 421

Disable Triggers Button, 421

Enable Triggers Button, 421

Filter to exclude Timestamp Trigger, 420, 421

Mark All Button, 421

Trigger Definition, 421

Trigger List, 420

Unmark All Button, 421

SQLExecuteGotoHandler, 308

SQLLastCompany, 105, 434

SQLLogAllODBCMessages, 444

SQLLoginCompatibilityMode, 73, 445

SQLLogODBCMessages, 70, 444

SQLLogPath, 70, 444

SQLLogRename, 70, 434

SQLLogSQLStmt, 70, 444

 G P P O W E R T O O L S I N D E X

 G P P O W E R T O O L S 829

Standard Mode, 13, 24, 52, 54, 55, 56, 58, 63, 67, 69, 82, 83,

109, 130, 136, 140, 148, 152, 156, 161, 163, 179, 232, 233,

235, 252, 387, 633, 634

.Net Executer, 235, 314

Calculator, 67

Configuration Export/Import, 101, 387

Dex.ini Settings, 21, 54, 69, 82, 252

Enhanced Security, 156

Individual Logging Control, 55, 83

Logging Options, 55, 83

Manual Logging Mode, 52, 633, 634

Resource Finder, 130

Resource Information, 109

Runtime Executer, 232, 290

ScreenShot, 58, 267

Security Analyzer, 152

Security Denied, 161

Security Hidden, 163

Security Information, 111, 138, 140, 149, 153

Security Log, 100, 148, 180

Security Profiler, 136, 179

Send Email, 63

SQL Executer, 233, 301

SQL Profile Traces, 56

Standard Signature to add to all emails, 94

Standard Toolbar, 29, 59, 63, 67, 105

Find a Window, 29

Start Button, 242

Start Capture of Resources and Security Objects, 138

Start Date, 282

Start Logging on next startup only, 55, 71

Dexterity Profile, 71

Dexterity Script, 71

SQL Logging, 71

Start Project Triggers Automatically on Login for Users, 240

Start Trigger Automatically on Login, 70, 246, 260

Start Trigger Automatically on Login for Users, 261

Start Trigger Temporarily Disabled, 285

Starting Triggers, 258, 259

Startup Tab, 72

Static Values, 117

Status Button, 366

Stop Button, 242

Stop Capture and create/update Security Task, 138

Stop processing rules, 371

Stop SQL Profile Trace, 56

Stop Trigger after Condition met, 285

Stranded SQL Profile Traces, 56

Strip Invalid Field Characters, 355, 363

Subject, 65, 93, 415

Summary Format, 152

SUPERUSER Security Role, 146, 230

SUPERUSER Security Task, 146, 230

SUPERUSER Security Task and Role, 230

SUPERUSER Workflow Setup, 230

Support, 18

Suppress Date Change Dialog, 77

Suppress Next Note Index warning for Test and Historical

Companies, 177

Suppress Sample Company Date Warning, 72

Suppress Sound from Application, 78

SuppressChangeDateDialog, 77, 187, 443, 445

SuppressChangeDateForce, 77, 187, 443, 445

SuppressSound, 78, 445

Survey, 48

SY_User_Object_Store, 584, 585, 586, 587, 645, 646, 647,

648

SY09400, 146, 153, 154, 160

SY90000, 584, 585, 586, 587, 645, 646, 647, 648

syCurrentResources, 146, 153, 154, 160

Syntax Errors, 270, 291, 315

Syntax Highlighting, 448

System Level Queries, 152

System Module, 13, 14, 51, 52, 58, 63, 67, 69, 80, 82, 93, 97,

99, 101, 103, 105

Additional System Features, 105

Administrator Password Setup, 80

Calculator, 67

Configuration Export/Import, 97

Configuration Maintenance, 99

Dex.ini Settings, 69

Dictionary Assembly Generator Control, 103

Email Settings, 93

Logging Settings, 82

Manual Logging Mode, 52

ScreenShot, 58

Send Email, 63

Setup Backup and Restore, 101

System Password, 49, 80, 177

System Settings, 444

System Status, 58, 60, 61, 62, 268

System Tables with User ID & Company ID column, 418

System Tables with User ID column, 418

System Versions, 227

T
Tab Delimited, 126, 145, 150, 154, 162, 164, 210, 228, 234,

307

Table, 109, 136, 246, 257, 259, 263, 305

Table Descriptions, 117, 128, 133

Table Explorer, 122, 156, 263, 275, 304, 434, 439

Back Up Button, 126

Comma Delimited, 126

Expanded Fields, 127

Export Button, 126

Export Mode, 126

HTML Table, 126

OK Button, 126

Refresh Dictionary Resources, 127

Tab Delimited, 126

Table Groups, 122

Table Export, 388

Table Group, 109

Table Groups, 122

Table Import, 390

Table Information for SQL Maintenance, 432

Table Keys, 113

Table Keys Lookup, 113, 440

Table List, 386, 423, 430

Table Lookup, 112, 439

Table Name, 263

Table Physical Name, 386

Table restricted to Form, 257, 259

Table Structure Errors, 404

Table Technical Name, 386

Table Type, 430

Table Usage, 114

Table Usage Lookup, 114

Table.xml, 252

G P P O W E R T O O L S I N D E X

830 G P P O W E R T O O L S

Table_<User>_<Company>_<Date>_<Time>.xml, 252

Tables Containing Field Button, 115

Target Dex.ini, 189

Target User ID, 417

Technical Name, 109, 263, 264

Temporarily Disable Trigger after, 285

Terminal Server, 95

Test Button, 186, 340, 379

Text, 304

Theme Group, 166, 171

Theme Name, 166, 171

Third Party Dictionary, 192

Timed Event, 257, 258, 259

Timestamp Button, 237, 255, 288, 300, 313, 322, 329, 338,

360, 376

To Button, 65

To Field, 65

Toggle Exclusion Button, 418, 419

Tools Menu, 27, 28, 58, 63, 67

Top Button, 194, 199, 202, 216, 221, 308

TPELogging, 76, 446

Trace.trc, 52, 54

Trace_<User>_<Company>_<Date>_<Time>_<Mode>.trc,

54

Transact SQL, 233, 291, 299, 303, 305

Transaction being Edited, 106

Transfer User and Company details, 98, 239

Trial Key, 45

Trigger, 192, 246, 247, 248, 252, 254, 259, 286

Trigger Administration, 262

Change Start Mode Button, 262

Change State Button, 262

Mark To Delete Button, 262

Trigger Attach, 259

After Logging In, 259

After Login Event, 259

After Login Event (After Background), 259

After Login Event (Background), 259

After Login Event (Delayed, 259

After Login on Day X, 259

After Login on DOW, 259

After Menu Selected, 259

After Original, 259

After Original Delayed, 259

After Starting Triggers, 259

After Table Event, 259

After Time XX

XX, 259

After Timed Event, 259

Before Logout Event, 259

Before Original, 259, 267

Trigger Definition, 421

Trigger Description, 256

Trigger Event, 246, 257, 263, 270, 640, 641, 642, 644

Add Menu Below Entry, 258

Add Menu to Bottom, 258

Add Menu to Top, 258

Context Menu, 257, 258

Daily Event, 258

Delete Record, 257

Every 1 Minute, 258

Every 10 Minutes, 258

Every 15 Minutes, 258

Every 30 Minutes, 258

Every 5 Minutes, 258

Every 60 Minutes, 258

Field Change, 257, 258

Field Changed, 258

Field Context, 258

Field Post, 257, 258

Field Pre, 257, 258

Field Value Changed, 257

Form Level, 257, 258

Form Level with Parameters, 257, 640, 641, 642, 644

Form Post, 257, 258

Form Pre, 257, 258

Global Level, 257

Global Level with Parameters, 257, 640, 641, 642, 644

Login Event, 258

Logout Event, 258

Modal Dialog, 257, 258

Monthly Event, 258

Read Record, 257

Save Record, 257

Scroll Change, 257, 258

Scroll Delete, 257, 258

Scroll Fill, 257, 258, 267

Scroll Insert, 257, 258

Scroll Post, 257, 258

Scroll Pre, 257, 258

Starting Triggers, 258

Warning Dialog, 258

Weekly Event, 258

Window Activate, 257, 258

Window Post, 257, 258

Window Pre, 257, 258, 267

Window Print, 258

Trigger ID, 100, 246, 247, 252, 254, 255, 260

Trigger Information, 256

Trigger List, 380, 420

Trigger Mode, 342

Trigger Script Clipboard, 270

Clear Script, 270

Copy Script, 270

Trigger Setup, 236, 240, 246, 321, 328, 337, 345, 434, 632,

633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 644

.Net Assemblies, 272, 292, 316

.Net Execute Setup, 270, 312

Accelerator Key, 264

Actions Tab, 254, 265

Administration Button, 262

All Users and Companies, 261

Allow Trigger Recursion, 285

Capture Dexterity Script Log, 284

Capture Dexterity Script Profile, 284

Capture Macro Recording, 285

Capture Screenshots to default logging folder or email, 267

Capture SQL Log, 284

Capture SQL Profile Trace, 284

Change Start Mode Button, 262

Change State Button, 262

Check Form Security, 270

Check Syntax, 278

Clear Script, 270

Clipboard Button, 270

Conditional Script, 246, 252, 265, 270, 271, 283

Constant Explorer, 277, 304

Copy Script, 270

Debug Expressions, 280

Debug Table Buffers, 281

 G P P O W E R T O O L S I N D E X

 G P P O W E R T O O L S 831

Debug Watch, 280

DEFAULT, 100, 254

Default Button, 271

Dialog Message, 266

Dialog/Alert Type, 266

Disable trigger after Condition met, 285

Disabled, 260

Display Message, 252, 266

Display Message to screen using desktop alert, 265

Display Message to screen using simple system dialog

instead of text box dialog, 266

Display Message to screen using system dialog, 265

Do not activate Logging Mode, 260

Do not run missed event on next login, 283

DPS, 283

Duplicate Button, 260

Dynamics Process Server, 283

Email Address, 266

Email Screenshots using Administrator Email or Email

Address below, 267

Enable in Service Mode, 283, 362

Enable in Web Client, 283

End Date, 282

Entry, 264

Error Handling, 283

Exclude Selected Users and Companies rather than include

them, 261

Execution Mode, 283

Export Current Table Record to XML, 266

Export Entire Table to XML restricted by Where Clause,

266

Export Record, 252

Export Table, 252

Field, 264

Field Explorer, 277

Field Name, 264, 266

Find …, 278

Find Next, 278

Font Size, 279

Font Style, 279

Form, 263

Form Explorer, 263, 273

Form Name, 263

Function, 264

Function Name, 264

Generate Dexterity Pass Through, 279

Global Variable Explorer, 276

Goto Line …, 278

Help Button, 271

Helper Button, 273

Helper Function Assistant, 273

If less than X MB, 266

Include Current Launch File, 268

Include Dex.ini Settings File, 267

Include info for all databases, 268

Include User Dex.ini Settings File, 268

Include zipped log files, 266

Insert Button, 272, 273, 304

Insert Helper Function, 273

Issue Reject Record, 267

Issue Reject Script, 267

Keep Focus on Field, 267

Long Description, 256

Mark To Delete Button, 262

Message, 271

Message ID, 266, 337

Minimize Log Entries, 260

Modified, 263, 269, 270, 274

Names Button, 273

Names Button Uses Clipboard, 280

Non Logging Triggers, 260, 267, 282, 284, 285

Notes Button, 255

Number of execution logs to keep, 283

Open Window Hidden, 267

Optional Where Clause, 267

Options, 279

Options Tab, 254, 282

OUT_Condition, 270

Parameter ID, 271, 282

Parameter Lists, 271, 282

Parameter Placeholder, 271, 304, 316

Parameter Placeholders, 272, 292, 316

Parameters Button, 271

Perform actions when fired and condition not met, 265

Perform actions when fired regardless of condition, 265

Placeholders, 272

Procedure, 264

Procedure Name, 264

Product Name, 263

Project ID, 282

Pull Window Focus before script, 267

Release Notes, 255

Replace …, 278

Replace and Find Next, 278

Report Explorer, 275

Resource Tab, 254, 263

Restore Field Value, 267

Restriction of Scope, 286

Runtime Execute Setup, 270, 287

Save and Continue, 278

SBA, 283

Script Context, 269, 270

Script Explorer, 276

Script Menu, 278

Script Tab, 254, 269

Selected Users and Companies, 261

Send Email using Administrator Email or Email Address

below, 266

Service Based Architecture, 283

SQL Execute Setup, 270, 299

SQL Profile Trace Mode, 284

Start Date, 282

Start Trigger Automatically on Login, 70, 246, 260

Start Trigger Automatically on Login for Users, 261

Start Trigger Temporarily Disabled, 285

Stop Trigger after Condition met, 285

Syntax Errors, 270

Table, 246, 263

Table Explorer, 263, 275

Table Name, 263

Technical Name, 263, 264

Temporarily Disable Trigger after, 285

Timestamp Button, 255

Trigger, 287, 299, 312

Trigger Administration, 262

Trigger Attach, 259

Trigger Description, 256

Trigger Event, 246, 257, 263, 270

Trigger ID, 100, 246, 247, 252, 254, 255, 260

Trigger Information, 256

G P P O W E R T O O L S I N D E X

832 G P P O W E R T O O L S

Trigger Script Clipboard, 270

Trigger Setup Scheduled Log, 283

Trigger Status, 242

Trigger Type, 256, 257, 259, 263, 270, 286

Users Button, 240, 260, 261

Visual Studio Integration Toolkit, 258

Web Client, 283

Window, 264

Window Name, 264

WinthropDC.GpPowerToolsVB.dll, 263

WinthropDC.GpPowerToolsVC.dll, 269

Trigger Setup Scheduled Log, 283

Trigger Status, 192, 242, 248, 260, 435

About Dexterity, 250

Customization Maintenance, 249

Customization Status, 249

Hidden About Window, 251

Options Menu, 249

Process Monitor, 250

Register, 248

Unregister, 248, 260

Trigger Type, 256, 257, 259, 263, 270, 286, 342

Add Field Context Menu, 282

Add Form Menu, 282

Application Level Menu, 257, 258, 259, 264

Field Context Menu, 257, 258, 259

Focus Event, 257, 259, 267, 282

Focus Event with Table, 257, 259

Form Level Menu, 257, 258, 259

Function, 257, 259

Login/Logout Event, 257, 258, 259

Procedure, 257, 259

Scheduled Event, 257, 258, 259, 283

Starting Triggers, 259

Table, 257, 259

Table restricted to Form, 257, 259

Timed Event, 257, 258, 259

Warning Dialog, 257, 258, 259

Triggering, 252

Triggering On Virtual Fields, 346

U
UAC, 21, 42, 79, 194, 195

UNC Network shared path to above Folder, 92

Uninstall, 42

Unknown Objects, 109, 124, 136

Unmark All, 132

Unmark All Button, 61, 139, 151, 162, 164, 204, 414, 421,

430

Unmark All Buttons, 419

Unregister, 248, 260

Unregister Button, 380

Up Button, 194, 199, 202, 216, 221, 308, 335

Update Button, 226

Update Check, 46

Update Keys, 45

Update last User ID and Company on exit, 73

Update Triggers/Scripts Button, 243

Uppercase Field Value, 356, 363

URL Drill Backs, 289

Usability Tab, 172, 207

Use Password Hash File where possible, 398

Use Regular Expression (RegEx), 369

Use separate password instead of System Password, 80

Use SQL Login Compatibility Mode, 73

User Account Control, 21, 42, 79, 194, 195

User Activity Log, 100, 183, 186, 208, 436

Auto Cancel, 210

Auto Count, 210

Auto Date, 210

Auto Exit, 210

Auto Time, 210

Automatic Logout, 210

Comma Delimited, 210

Company, 209

Company ID, 209

Days to keep daily Max User and detailed data for, 184

Detail, 210

Details Button, 210

Display Mode, 208

Enable User Activity Tracking, 183

Export Button, 210

Export Mode, 210

Filter Modes, 209

HTML Table, 210

Maximum Users, 209

OK Button, 209

Open Button, 209

Redisplay Button, 209

Sort Mode, 209

Tab Delimited, 210

User Activity Log Detail, 210

User Activity Log Maximum Users, 209

User ID, 209

User Setup, 209

User Activity Log Detail, 210, 436

User Activity Log Maximum Users, 209, 436

User Button, 221

User Colors Button, 170

User Company Access Fix, 230

User Defined Date, 181, 182

User Defined String, 181, 182

User Dex.ini, 60, 69, 178, 189, 268

User Email Address, 180, 412

User ID, 96, 141, 149, 159, 162, 164, 209

User List, 412

User Message, 185, 443

User Password, 413

User Preferences, 205

User Preferences Apply, 105

User Security Setup, 24, 26, 142, 154

User Setup, 180, 181, 209, 230, 412, 415, 432

Send Password Reset Emails, 432

User Setup Additional Information, 180, 181, 182, 230, 398,

412, 413, 415, 649, 650, 651, 778, 779

Default Site ID, 181

Employee ID, 180

MBS_UserAddInfo_Get, 649

MBS_UserAddInfo_GetPrompt, 651

MBS_UserAddInfo_Set, 650

RW_GetUserMasterAdditionalData, 778

RW_GetUserMasterAdditionalPrompts, 779

SQL Lookup, 182

User Defined Date, 181, 182

User Defined String, 181, 182

User Email Address, 180, 412

User Status, 413

Users & Companies Queries, 152

Users and Databases, 392

 G P P O W E R T O O L S I N D E X

 G P P O W E R T O O L S 833

Users Button, 199, 200, 221, 222, 240, 260, 261, 293, 306,

316, 365, 378

Using Database Validation, 406

V
Validate Button, 395

Validate Field Value, 355, 363

Value, 189

VBA, 52, 195, 286

VBADisable, 195, 446

Virtual Field Limitations, 346

Virtual Fields, 345, 350, 736, 737, 738, 739, 740, 741, 743,

744, 745, 746, 747, 748, 749, 750, 751, 752

Adding Virtual Fields, 345

Introduction, 345

Making Space for Virtual Fields, 346

MBS_Add_Virtual_Field, 736

MBS_Add_Virtual_FieldAll, 741

MBS_Add_Virtual_FieldFormat, 738

MBS_Add_Virtual_FieldLine, 743

MBS_Add_Virtual_FieldPrompt, 737

MBS_Add_Virtual_FieldPromptFormat, 740

MBS_Add_Virtual_FieldPromptLookup, 739

MBS_Expand_Virtual_Field_Window, 744

MBS_Get_Field_Reference, 745

MBS_Get_Virtual_Field, 746

MBS_Get_Virtual_Field_Caption, 749

MBS_Get_Virtual_Field_Tooltip, 751

MBS_Map_Virtual_Field, 748

MBS_Set_Virtual_Field, 747

MBS_Set_Virtual_Field_Caption, 750

MBS_Set_Virtual_Field_Tooltip, 752

Triggering On Virtual Fields, 346

Virtual Field Limitations, 346

Visual Basic for Applications, 52, 195, 286

Visual Basic.Net, 20, 195, 235, 312, 315, 316, 578, 583, 780

Visual C#, 20, 195, 235, 312, 315, 316, 578, 583, 780

Visual Studio Call, 781, 783, 785, 787, 789

ServiceCreateCustom, 781

ServiceDeleteCustom, 783

ServiceGetCustom, 785

ServicePostCustom, 789

ServiceUpdateCustom, 787

Visual Studio Integration Toolkit, 258, 289

Custom Forms, 289

Visual Studio Tools, 116, 195

VSTools, 195

W
Warn user if drive space for Temp, Data or Logging folders

below, 176

Warning, 109

Warning Dialog, 257, 258, 259

Warning Field Before, 355, 363

Warning Message, 351, 368

Warnings, 206

WDC_InstallExclude, 23, 433

Web Client, 30, 50, 53, 59, 61, 62, 63, 67, 95, 117, 118, 127,

133, 134, 141, 143, 154, 166, 173, 195, 196, 283, 362

Web Service, 781, 783, 785, 787, 789

ServiceCreateCustom, 781

ServiceDeleteCustom, 783

ServiceGetCustom, 785

ServicePostCustom, 789

ServiceUpdateCustom, 787

Website Settings, 225, 436, 442

Allow Intelligent Cloud Insights as default for new users,

226

Connect Section, 225, 442

Connect Section Website URL, 225

Do not apply Website Settings on this workstation, 226,

442

Enable systemwide control of the Homepage Connect

Section website, 225

Enable systemwide control of the Homepage Intelligent

Cloud Insights Section website, 225

Hide the Homepage Intelligent Cloud Insights website

entirely, 225

Intelligent Cloud Insights Section, 225, 442

Intelligent Cloud Insights Section Website Description,

226

Intelligent Cloud Insights Section Website Title, 226

Intelligent Cloud Insights Section Website URL, 226

MBS_Debug_DisableWebsiteSettings, 226

Update Button, 226

Weekly Event, 258

When Manual Logging is stopped, 83

When only X% of licenses available, 185

When Registration has failed or expired, 45

Window, 109, 264

Activate, 257, 258

Post, 257, 258

Pre, 257, 258

Print, 258

Window Background Color, 166

Window Descriptions, 118, 128, 134

Window Heading Color, 166

Window Mode, 373

Window Name, 264, 373

Window Position, 373

Window Position Control

Reset Window Positions, 206

Window Position Memory, 174, 203, 207, 436

Cancel Button, 203

Default Button, 204

Hidden Forms, 206

Mark All Button, 204

OK Button, 203

Override system resizable check, 206

Reset Button, 205

Reset Window Memory Settings, 205

Reset Window Position Memory Settings, 205

Unmark All Button, 204

User Preferences, 205

Warnings, 206

Window Pre, 267

Window Rule, 352, 363

After Window Activate Script, 353, 363

After Window Post Script, 353, 363

After Window Pre Script, 352, 363

Change Window Title, 352, 363

Clear Changes Before Window Close, 352, 363

Disable Window, 352, 363

Focus First Window Field, 352

Password Window, 352, 363

Reject Window Activate Script, 353, 363

Reject Window Post Script, 352, 363

G P P O W E R T O O L S I N D E X

834 G P P O W E R T O O L S

Reject Window Pre Script, 352, 363

Window Toolbar Color, 166

Window Tools Menu, 28

Window/Table/Procedure/Function Name, 342

WindowHeight, 74, 446

WindowMax, 73, 446

WindowPosX, 73, 446

WindowPosY, 73, 446

Windows Administrator User ID, 87

Windows Bitmap Font Registry Settings, 78

Windows Bitmap Scaling Settings, 21, 78

Windows Level Security, 137

Windows Start Bar, 173

WindowWidth, 74, 446

WinthropDC.GpPowerToolsVB.dll, 20, 235, 263, 280, 297,

310, 312, 320, 326

WinthropDC.GpPowerToolsVC.dll, 20, 235, 269, 290, 312,

323

X
XML Table Export, 385, 436

Duplicate Button, 386

Export Path, 386, 387, 390

Optional Where Clause, 387

Options Menu, 388

Profile ID, 385, 386

Profile Name, 386

Progress Window, 387, 390

Table Export, 388

Table List, 386

Table Physical Name, 386

Table Technical Name, 386

XML Table Import, 389, 437

Duplicate Records, 390

Import Button, 389

Import Path, 387, 389, 390

Options Menu, 390

Overwrite Duplicate Records, 390

Overwrite Tables Contents, 390

Progress Window, 387, 390

Table Import, 390

** End of document - GPPTools.docx - DM - 4 March 2025 **

