
Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Appendix D: COM (Component Object Model)

Page 111

APPENDIX D: COM (COMPONENT OBJECT MODEL)
Dexterity and Its Support for COM

This section gives you an overview of a feature in Dexterity® the support for
COM, the Component Object Model. COM allows Dexterity-based applications
to easily integrate with other applications.

This appendix reviews how to utilize COM in your application and also give you
information about using COM with common Microsoft applications. Refer to the
Dexterity Help file for more comprehensive instructions.

Introduction to COM
Automation is the general term that describes how applications use COM to
interact with each other. Dexterity-based applications can act as an automation
server allowing other applications to use COM to access data resources.

In addition, Dexterity-based applications can act as automation clients,
controlling and accessing the data of other COM enabled applications like
Microsoft Excel® and Microsoft Word®.

Applications that implement COM typically have classes for each of the items
you can work with. The class is a list of related methods and properties used to
work with that item or task. You use the appropriate class to create an object for
each item you want to work with. Once you create the object, the methods,
properties, and events are used to interact with the object.

Libraries
Most COM-enabled applications provide a library that describes the classes,
methods, and properties that are provided by the application. The information in
the library tells other applications how to access resources through COM. A
"type library" is a special type of file that uses a standard format. Dexterity can
use the information in the type library to verify the code you write. In addition, it
can verify that the values used for COM methods and properties have the
appropriate parameter types.

To access a COM-enabled application, you must create a reference to its type
library. This reference tells Dexterity where to look for the necessary COM
information as you are developing your application. You can add a library
reference once for an entire dictionary, or add a reference for the current script.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Dexterity − Integration in Microsoft Dynamics GP 9.0

Page 112

You can access the COM Type Library Window by selecting library from the
Base Resource List in the Resource Explorer Window and selecting new. Click
the library lookup button to open a window which lists all the type libraries that
have been registered.

Once the type library reference has been added to the dictionary, the Data Type
Definition window, and all scripts in the application are able to access the
information in the type library.

NOTE: To add a type library reference to a specific script, you use the import
statement. The statement creates a reference to the specified library.

Referencing COM Objects
A COM reference is also known as a "typed" reference, because it can refer only
to a COM object of a specified type. When you create a COM reference, you
must specify the class of the item that the reference refers to.

A generic reference is also known as an "untyped" reference. It can refer to any
type of COM resource, in addition to referring to a resource in the application.
Your application may not perform as well if you use generic resources, because
the information necessary to connect to the specified object is not available at
compile-time.

CAUTION: We do not recommend using generic references to refer to COM objects
since there is no compile-time checking to verify the reference is used correctly.

Now that we have linked the type library describing the objects we want to work
with a reference can be created. This can be done from the Data Type Definition
window by specifying Reference as the Control Type, and COM Object as the
Reference Type. Select the buttons next to the COM Object Type to open the
Class Browser window.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Appendix D: COM (Component Object Model)

Page 113

Within Dexterity, the Class Browser window is used to examine the classes
available. The Class Browser lists the properties and methods available for each
class.

NOTE: Events can be used to notify other applications when a specific action occurs
and can be used in your Dexterity-based application. Refer to Callbacks and Events for
more information

COM in sanScript
Most of the interaction with a COM-enabled application is controlled through
sanScript code. Typically, the first action a script must perform is to create or
retrieve an object to work with. There are two ways to create objects: the "new"
statement and the COM_CreateObject() Function. The Help file lists guidelines
to determine the best way to create objects.

In some instances, the application you want to interact with may already be
running. You can use the COM_GetObject() function to retrieve an object for an
application that is running.

HINT: Make sure you properly dispose of the object when you are finished working
with it. Dexterity tracks how many times a specific object is being referenced. An object
exists as long as there is a valid reference to it.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Dexterity − Integration in Microsoft Dynamics GP 9.0

Page 114

Methods and Properties
Methods and properties can be accessed from sanScript by using the dot notation
similar to Visual Basic®. For example, the following sanScript statement accesses
the ActiveWorkbook property and the Calculate() method for an Excel
Workbook.

local Excel.Application app;

local Excel.Workbook workbook;

app = COM_GetObject("Excel.Application");

{Use the ActiveWorkbook property to retrieve the active
workbook}

workbook = app.ActiveWorkbook;

{Use the Calculate() method to recalculate the workbook}

workbook.Calclate();

NOTE: Constants can also be used while working with properties and methods in the
library. Always use COM constants when possible. They make your COM code much
easier to read.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Appendix D: COM (Component Object Model)

Page 115

Data Types
When working with COM from sanScript, the data types used for variables and
fields must be compatible with COM properties and methods you are accessing.
The following lists the Dexterity data types and corresponding COM types.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Dexterity − Integration in Microsoft Dynamics GP 9.0

Page 116

Error Handling
When working with sanScript code, there are often times you may encounter
errors (exceptions) as your integrations run. If a COM exception error occurs,
scroll down the error dialog that displays the COM exception.

Debugging
While developing a COM integration, you may encounter a common problem
where it appears that code that worked previously has now stopped functioning.
You may be tempted to suspect your code, but the likely problem is a hidden
instance of the application you are integrating with.

When you create a new COM reference to an application, an instance of that
application is created invisibly. If your Dexterity-based application terminates
abnormally, which is common during COM development, you may leave
instances of the other application running. When your code does not seem to be
working, it likely is interacting with a hidden instance of the application you are
integrating with.

HINT: If you are having problems with COM integrations, use the Windows Task
Manager to list all of the processes currently running. If you see multiple processes for
the application you are integrating with, use the End Process button to terminate them,
and then try your integration again. If you continue to have problems, restart both
Dexterity and the application you are integrating with to eliminate any COM
communication issues.

Callbacks and Events
Callback objects can be created in your Dexterity-based application and allow
other applications to access functionality in your application through COM.
Specific event handlers can be created to notify your application of events that
occur in other applications. Callback objects are created at runtime, using several
functions from the Dexterity object function library. After creating the callback
object, you must make it accessible to other applications.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Appendix D: COM (Component Object Model)

Page 117

Some applications that implement COM interfaces also provide events that can
notify other applications of specific actions. The Class Browser window lists the
events that an application is making available.

An event handler is the code needed in your application to be notified that a
COM event occurred. You need to create a user-defined function in Dexterity to
respond to the event. Refer to the Help file on creating an event handler for the
steps you need to follow.

NOTE: Examples of using COM with Microsoft applications are listed in the Help File.
Refer to COM script examples for detailed information.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Dexterity − Integration in Microsoft Dynamics GP 9.0

Page 118

